logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: sr11151.2-t26_1-p1

You are here: Home > Sequence: sr11151.2-t26_1-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Sporisorium reilianum
Lineage Basidiomycota; Ustilaginomycetes; ; Ustilaginaceae; Sporisorium; Sporisorium reilianum
CAZyme ID sr11151.2-t26_1-p1
CAZy Family CBM21
CAZyme Description related to Sucrose-6-phosphate hydrolase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
672 72156.59 4.6754
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_SreilianumSRZ2 6791 999809 118 6673
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.26:2

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 130 482 6.9e-68 0.9829351535836177

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
350133 GH32_XdINV-like 1.30e-152 136 476 1 336
glycoside hydrolase family 32 protein such as Xanthophyllomyces dendrorhous beta-fructofuranosidase (Inv;Xd-INV;XdINV). This subfamily of glycosyl hydrolase family GH32 includes fructan:fructan 1-fructosyltransferase (FT, EC 2.4.1.100) and beta-fructofuranosidase (invertase or Inv, EC 3.2.1.26), among others. These enzymes cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. Xanthophyllomyces dendrorhous beta-fructofuranosidase (XdINV) also catalyzes the synthesis of fructooligosaccharides (FOS, a beneficial prebiotic), producing neo-FOS, making it an interesting biotechnology target. Structural studies show plasticity of its active site, having a flexible loop that is essential in binding sucrose and beta(2-1)-linked oligosaccharide, making it a valuable biocatalyst to produce novel bioconjugates. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
214757 Glyco_32 2.74e-73 130 629 1 436
Glycosyl hydrolases family 32.
350110 GH32_FFase 4.97e-67 136 474 1 280
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
224536 SacC 1.33e-51 123 648 26 468
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].
395193 Glyco_hydro_32N 1.48e-51 130 473 1 295
Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
0.0 1 672 1 672
0.0 1 672 1 672
0.0 1 672 1 669
0.0 89 672 112 690
1.14e-113 122 666 43 627

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1.33e-46 121 669 61 637
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5ANN_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
1.33e-46 121 669 61 637
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S82_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
1.52e-45 121 669 59 635
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FK7_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5FK8_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FK8_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5FKB_A Chain A, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FKB_B Chain B, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FKC_A Chain A, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FKC_B Chain B, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FMC_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FMC_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
1.56e-45 121 669 61 637
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5NSL_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5O47_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5O47_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6FJE_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6FJE_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6FJG_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6FJG_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6S2G_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S2G_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6S2H_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S2H_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6S3Z_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S3Z_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
1.56e-45 121 669 61 637
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FIX_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5FMB_A Chain A, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FMB_B Chain B, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FMD_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FMD_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5.19e-35 125 664 123 654
Beta-fructofuranosidase 1 OS=Zea mays OX=4577 GN=IVR1 PE=3 SV=1
5.67e-35 113 664 69 598
Acid beta-fructofuranosidase 2, vacuolar OS=Rosa hybrid cultivar OX=128735 PE=2 SV=1
2.64e-34 86 664 81 632
Acid beta-fructofuranosidase OS=Vigna radiata var. radiata OX=3916 GN=INVA PE=1 SV=1
6.46e-34 51 664 46 634
Acid beta-fructofuranosidase OS=Phaseolus vulgaris OX=3885 PE=2 SV=1
2.70e-32 98 639 31 559
Beta-fructofuranosidase, insoluble isoenzyme 2 OS=Oryza sativa subsp. japonica OX=39947 GN=CIN2 PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000039 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in sr11151.2-t26_1-p1.