Species | Saprolegnia parasitica | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Oomycota; NA; ; Saprolegniaceae; Saprolegnia; Saprolegnia parasitica | |||||||||||
CAZyme ID | SPRG_05215-t26_1-p1 | |||||||||||
CAZy Family | GH16 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GT2 | 24 | 187 | 1.2e-24 | 0.9588235294117647 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
133063 | beta3GnTL1_like | 1.62e-72 | 26 | 237 | 2 | 214 | Beta 1, 3-N-acetylglucosaminyltransferase is essential for the formation of poly-N-acetyllactosamine . This family includes human Beta3GnTL1 and related eukaryotic proteins. Human Beta3GnTL1 is a putative beta-1,3-N-acetylglucosaminyltransferase. Beta3GnTL1 is expressed at various levels in most of tissues examined. Beta 1, 3-N-acetylglucosaminyltransferase has been found to be essential for the formation of poly-N-acetyllactosamine. Poly-N-acetyllactosamine is a unique carbohydrate composed of N-acetyllactosamine repeats. It is often an important part of cell-type-specific oligosaccharide structures and some functional oligosaccharides. It has been shown that the structure and biosynthesis of poly-N-acetyllactosamine display a dramatic change during development and oncogenesis. Several members of beta-1, 3-N-acetylglucosaminyltransferase have been identified. |
132997 | Glyco_tranf_GTA_type | 2.24e-28 | 26 | 218 | 2 | 151 | Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities. |
395426 | Glycos_transf_2 | 6.13e-27 | 24 | 186 | 1 | 160 | Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids. |
133045 | CESA_like | 7.83e-21 | 26 | 207 | 2 | 180 | CESA_like is the cellulose synthase superfamily. The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of Glucan. |
223539 | WcaA | 1.06e-18 | 19 | 215 | 1 | 183 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
5.17e-78 | 21 | 325 | 8 | 318 | |
4.99e-77 | 23 | 325 | 7 | 313 | |
3.54e-75 | 22 | 325 | 7 | 317 | |
1.37e-73 | 3 | 325 | 82 | 410 | |
7.68e-73 | 17 | 325 | 8 | 324 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
6.89e-12 | 21 | 135 | 374 | 481 | Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GalNAc and UDP [Escherichia coli],2Z87_B Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GalNAc and UDP [Escherichia coli] |
|
6.90e-12 | 21 | 135 | 375 | 482 | Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_B Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_C Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_D Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli] |
|
9.29e-11 | 21 | 154 | 5 | 136 | Crystal structure of a putative glycosyltransferase from Bacteroides fragilis [Bacteroides fragilis NCTC 9343],3BCV_B Crystal structure of a putative glycosyltransferase from Bacteroides fragilis [Bacteroides fragilis NCTC 9343] |
|
5.45e-09 | 18 | 172 | 2 | 145 | CgT structure in hexamer [Streptococcus parasanguinis FW213],5HEA_B CgT structure in hexamer [Streptococcus parasanguinis FW213],5HEA_C CgT structure in hexamer [Streptococcus parasanguinis FW213],5HEC_A CgT structure in dimer [Streptococcus parasanguinis FW213],5HEC_B CgT structure in dimer [Streptococcus parasanguinis FW213] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
1.36e-73 | 17 | 325 | 8 | 324 | UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase-like protein 1 OS=Rattus norvegicus OX=10116 GN=B3gntl1 PE=2 SV=1 |
|
1.08e-72 | 22 | 325 | 15 | 324 | UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase-like protein 1 OS=Mus musculus OX=10090 GN=B3gntl1 PE=2 SV=1 |
|
1.71e-72 | 23 | 325 | 20 | 328 | UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase-like protein 1 OS=Homo sapiens OX=9606 GN=B3GNTL1 PE=2 SV=2 |
|
3.72e-13 | 22 | 238 | 4 | 221 | Glycosyltransferase GlyG OS=Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4) OX=170187 GN=glyG PE=1 SV=1 |
|
1.02e-11 | 23 | 153 | 8 | 133 | Uncharacterized glycosyltransferase YibD OS=Escherichia coli (strain K12) OX=83333 GN=yibD PE=3 SV=2 |
Other | SP_Sec_SPI | CS Position |
---|---|---|
1.000080 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.