logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: SPBC16A3.13.1-p1

You are here: Home > Sequence: SPBC16A3.13.1-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Schizosaccharomyces pombe
Lineage Ascomycota; Schizosaccharomycetes; ; Schizosaccharomycetaceae; Schizosaccharomyces; Schizosaccharomyces pombe
CAZyme ID SPBC16A3.13.1-p1
CAZy Family GT20
CAZyme Description alpha-amylase homolog Aah4
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
774 Spom972h_chrII|CGC5 89459.44 7.4848
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_Spombe972h 6995 284812 1857 5138
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.1:7 3.2.1.1:16

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 284 599 2.9e-74 0.6993464052287581
GH13 61 279 3.6e-56 0.4542483660130719

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
200458 AmyAc_euk_AmyA 3.31e-68 434 631 179 375
Alpha amylase catalytic domain found in eukaryotic Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes eukaryotic alpha-amylases including proteins from fungi, sponges, and protozoans. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
200458 AmyAc_euk_AmyA 6.74e-63 25 144 1 122
Alpha amylase catalytic domain found in eukaryotic Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes eukaryotic alpha-amylases including proteins from fungi, sponges, and protozoans. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
223443 AmyA 3.59e-38 33 415 1 309
Glycosidase [Carbohydrate transport and metabolism].
214758 Aamy 8.45e-31 38 145 2 95
Alpha-amylase domain.
200459 AmyAc_AmyMalt_CGTase_like 1.63e-30 35 145 7 129
Alpha amylase catalytic domain found in maltogenic amylases, cyclodextrin glycosyltransferase, and related proteins. Enzymes such as amylases, cyclomaltodextrinase (CDase), and cyclodextrin glycosyltransferase (CGTase) degrade starch to smaller oligosaccharides by hydrolyzing the alpha-D-(1,4) linkages between glucose residues. In the case of CGTases, an additional cyclization reaction is catalyzed yielding mixtures of cyclic oligosaccharides which are referred to as alpha-, beta-, or gamma-cyclodextrins (CDs), consisting of six, seven, or eight glucose residues, respectively. CGTases are characterized depending on the major product of the cyclization reaction. Besides having similar catalytic site residues, amylases and CGTases contain carbohydrate binding domains that are distant from the active site and are implicated in attaching the enzyme to raw starch granules and in guiding the amylose chain into the active site. The maltogenic alpha-amylase from Bacillus is a five-domain structure, unlike most alpha-amylases, but similar to that of cyclodextrin glycosyltransferase. In addition to the A, B, and C domains, they have a domain D and a starch-binding domain E. Maltogenic amylase is an endo-acting amylase that has activity on cyclodextrins, terminally modified linear maltodextrins, and amylose. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
0.0 1 774 1 774
0.0 1 774 1 774
2.12e-172 525 774 1 250
1.79e-75 10 732 11 496
4.00e-59 434 732 9 306

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1.98e-53 17 724 14 490
Chain A, Alpha-amylase [Malbranchea cinnamomea]
2.46e-45 16 726 13 498
Chain A, Alpha-amylase [Aspergillus oryzae],6XSJ_B Chain B, Alpha-amylase [Aspergillus oryzae],6XSV_A Chain A, Alpha-amylase [Aspergillus oryzae]
2.46e-45 16 726 13 498
Taka-amylase [Aspergillus oryzae],6YQ7_B Taka-amylase [Aspergillus oryzae],6YQ9_AAA Chain AAA, Alpha-amylase [Aspergillus oryzae],6YQ9_BBB Chain BBB, Alpha-amylase [Aspergillus oryzae],6YQA_AAA Chain AAA, Alpha-amylase [Aspergillus oryzae],6YQA_BBB Chain BBB, Alpha-amylase [Aspergillus oryzae],6YQB_AAA Chain AAA, Alpha-amylase [Aspergillus oryzae],6YQB_BBB Chain BBB, Alpha-amylase [Aspergillus oryzae],6YQC_AAA Chain AAA, Alpha-amylase [Aspergillus oryzae],6YQC_BBB Chain BBB, Alpha-amylase [Aspergillus oryzae]
3.11e-45 29 724 5 474
Structure And Possible Catalytic Residues Of Taka-amylase A [Aspergillus oryzae],2TAA_B Structure And Possible Catalytic Residues Of Taka-amylase A [Aspergillus oryzae],2TAA_C Structure And Possible Catalytic Residues Of Taka-amylase A [Aspergillus oryzae]
1.73e-43 29 726 5 477
Orthorhombic crystal structure (space group P21212) of Aspergillus niger alpha-amylase at 1.6 A resolution [Aspergillus oryzae],2GVY_A Monoclinic crystal form of Aspergillus niger alpha-amylase in complex with maltose at 1.8 A resolution [Aspergillus oryzae],2GVY_B Monoclinic crystal form of Aspergillus niger alpha-amylase in complex with maltose at 1.8 A resolution [Aspergillus oryzae],3KWX_A Chemically modified Taka alpha-amylase [Aspergillus oryzae],3VX0_A Crystal Structure of alpha-amylase from Aspergillus oryzae [Aspergillus oryzae RIB40],3VX1_A Crystal Structure of alpha-Amylase from Aspergillus oryzae [Aspergillus oryzae RIB40],6TAA_A Structure And Molecular Model Refinement Of Aspergillus Oryzae (Taka) Alpha-Amylase: An Application Of The Simulated-Annealing Method [Aspergillus oryzae],7TAA_A Family 13 Alpha Amylase In Complex With Acarbose [Aspergillus oryzae]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
0.0 1 774 1 774
Alpha-amylase 4 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=meu7 PE=1 SV=1
3.19e-76 10 732 11 496
Alpha-amylase mde5 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=mde5 PE=2 SV=1
6.51e-51 26 721 29 492
Alpha-amylase OS=Saccharomycopsis fibuligera OX=4944 GN=ALP1 PE=3 SV=1
2.07e-48 16 726 13 498
Alpha-amylase B OS=Aspergillus awamori OX=105351 GN=amyB PE=3 SV=1
5.19e-48 16 724 13 496
Alpha-amylase A OS=Aspergillus awamori OX=105351 GN=amyA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI CS Position
0.000230 0.999746 CS pos: 24-25. Pr: 0.9782

TMHMM  Annotations      help

There is no transmembrane helices in SPBC16A3.13.1-p1.