logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: SDRG_02589-t26_1-p1

You are here: Home > Sequence: SDRG_02589-t26_1-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Saprolegnia diclina
Lineage Oomycota; NA; ; Saprolegniaceae; Saprolegnia; Saprolegnia diclina
CAZyme ID SDRG_02589-t26_1-p1
CAZy Family CBM47
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
750 83126.96 4.4761
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_SdiclinaVS20 17448 1156394 89 17359
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in SDRG_02589-t26_1-p1.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 531 659 1.2e-17 0.73125

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
340831 GT4_PimA-like 1.03e-27 354 735 4 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
340828 GT4_WlbH-like 8.73e-27 497 742 169 374
Bordetella parapertussis WlbH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Staphylococcus aureus CapJ may be involved in capsule polysaccharide biosynthesis. WlbH in Bordetella parapertussis has been shown to be required for the biosynthesis of a trisaccharide that, when attached to the B. pertussis lipopolysaccharide (LPS) core (band B), generates band A LPS.
223515 RfaB 2.14e-24 411 740 85 380
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
340838 GT4_MtfB-like 4.75e-18 482 649 142 299
glycosyltransferases MtfB, WbpX, and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. MtfB (mannosyltransferase B) in E. coli has been shown to direct the growth of the O9-specific polysaccharide chain. It transfers two mannoses into the position 3 of the previously synthesized polysaccharide.
409031 CH_SF 4.45e-17 47 156 5 98
calponin homology (CH) domain superfamily. CH domains are actin filament (F-actin) binding motifs, which may be present as a single copy or in tandem repeats (which increase binding affinity). They either function as autonomous actin binding motifs or serve a regulatory function. CH domains are found in cytoskeletal and signal transduction proteins, including actin-binding proteins like spectrin, alpha-actinin, dystrophin, utrophin, and fimbrin, as well as proteins essential for regulation of cell shape (cortexillins), and signaling proteins (Vav).

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
6.37e-150 348 750 151 607
1.05e-114 345 741 73 487
1.33e-111 348 739 72 485
1.33e-111 348 739 72 485
1.33e-111 348 739 72 485

PDB Hits      help

SDRG_02589-t26_1-p1 has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1.41e-09 480 673 194 387
D-inositol 3-phosphate glycosyltransferase OS=Corynebacterium kroppenstedtii (strain DSM 44385 / JCM 11950 / CIP 105744 / CCUG 35717) OX=645127 GN=mshA PE=3 SV=1
9.28e-08 464 702 177 411
D-inositol 3-phosphate glycosyltransferase OS=Acidothermus cellulolyticus (strain ATCC 43068 / DSM 8971 / 11B) OX=351607 GN=mshA PE=3 SV=1
1.53e-07 500 721 187 403
D-inositol 3-phosphate glycosyltransferase OS=Corynebacterium urealyticum (strain ATCC 43042 / DSM 7109) OX=504474 GN=mshA PE=3 SV=1
1.93e-06 505 673 214 380
D-inositol 3-phosphate glycosyltransferase OS=Frankia casuarinae (strain DSM 45818 / CECT 9043 / CcI3) OX=106370 GN=mshA PE=3 SV=1
2.51e-06 499 675 190 363
D-inositol 3-phosphate glycosyltransferase OS=Corynebacterium diphtheriae (strain ATCC 700971 / NCTC 13129 / Biotype gravis) OX=257309 GN=mshA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000061 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in SDRG_02589-t26_1-p1.