logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: SAPIO_CDS2485-t41_1-p1

You are here: Home > Sequence: SAPIO_CDS2485-t41_1-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Scedosporium apiospermum
Lineage Ascomycota; Sordariomycetes; ; Microascaceae; Scedosporium; Scedosporium apiospermum
CAZyme ID SAPIO_CDS2485-t41_1-p1
CAZy Family CE16
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
1497 169035.62 6.7438
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_SapiospermumIHEM14462 10920 N/A 2544 8376
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in SAPIO_CDS2485-t41_1-p1.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH31 240 510 3e-44 0.629976580796253

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
269885 GH31_glycosidase_Aec37 1.32e-90 259 541 1 278
E.coli Aec37-like. Glycosyl hydrolase family 31 (GH31) domain of a bacterial protein family represented by Escherichia coli protein Aec37. The gene encoding Aec37 (aec-37) is located within a genomic island (AGI-3) isolated from the extraintestinal avian pathogenic Escherichia coli strain BEN2908. The function of Aec37 and its orthologs is unknown; however, deletion of a region of the genome that includes aec-37 affects the assimilation of seven carbohydrates, decreases growth rate of the strain in minimal medium containing galacturonate or trehalose, and attenuates the virulence of E. coli BEN2908 in chickens. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein.
224418 YicI 5.91e-63 122 683 125 693
Alpha-glucosidase, glycosyl hydrolase family GH31 [Carbohydrate transport and metabolism].
395838 Glyco_hydro_31 3.02e-59 240 647 1 442
Glycosyl hydrolases family 31. Glycosyl hydrolases are key enzymes of carbohydrate metabolism. Family 31 comprises of enzymes that are, or similar to, alpha- galactosidases.
369159 HET 2.46e-35 804 946 1 146
Heterokaryon incompatibility protein (HET). This family represents a conserved region approximately 150 residues long within various heterokaryon incompatibility proteins that seem to be restricted to ascomycete fungi. Genetic differences in specific het genes prevent a viable heterokaryotic fungal cell from being formed by the fusion of filaments from two different wild-type strains. Many family members also contain the pfam00400 repeat and the pfam05729 domain.
269876 GH31 1.14e-21 259 522 1 226
glycosyl hydrolase family 31 (GH31). GH31 enzymes occur in prokaryotes, eukaryotes, and archaea with a wide range of hydrolytic activities, including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. In most cases, the pyranose moiety recognized in subsite -1 of the substrate binding site is an alpha-D-glucose, though some GH31 family members show a preference for alpha-D-xylose. Several GH31 enzymes can accommodate both glucose and xylose and different levels of discrimination between the two have been observed. Most characterized GH31 enzymes are alpha-glucosidases. In mammals, GH31 members with alpha-glucosidase activity are implicated in at least three distinct biological processes. The lysosomal acid alpha-glucosidase (GAA) is essential for glycogen degradation and a deficiency or malfunction of this enzyme causes glycogen storage disease II, also known as Pompe disease. In the endoplasmic reticulum, alpha-glucosidase II catalyzes the second step in the N-linked oligosaccharide processing pathway that constitutes part of the quality control system for glycoprotein folding and maturation. The intestinal enzymes sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) play key roles in the final stage of carbohydrate digestion, making alpha-glucosidase inhibitors useful in the treatment of type 2 diabetes. GH31 alpha-glycosidases are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues have been identified as the catalytic nucleophile and the acid/base, respectively.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
4.75e-301 28 771 25 847
3.74e-267 44 777 37 829
5.83e-259 1 773 1 824
6.45e-259 27 779 22 834
8.22e-259 1 786 1 836

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4.04e-19 152 508 65 448
Crystal structure of the Sulfolobus solfataricus alpha-glucosidase MalA [Saccharolobus solfataricus],2G3M_B Crystal structure of the Sulfolobus solfataricus alpha-glucosidase MalA [Saccharolobus solfataricus],2G3M_C Crystal structure of the Sulfolobus solfataricus alpha-glucosidase MalA [Saccharolobus solfataricus],2G3M_D Crystal structure of the Sulfolobus solfataricus alpha-glucosidase MalA [Saccharolobus solfataricus],2G3M_E Crystal structure of the Sulfolobus solfataricus alpha-glucosidase MalA [Saccharolobus solfataricus],2G3M_F Crystal structure of the Sulfolobus solfataricus alpha-glucosidase MalA [Saccharolobus solfataricus],2G3N_A Crystal structure of the Sulfolobus solfataricus alpha-glucosidase MalA in complex with beta-octyl-glucopyranoside [Saccharolobus solfataricus],2G3N_B Crystal structure of the Sulfolobus solfataricus alpha-glucosidase MalA in complex with beta-octyl-glucopyranoside [Saccharolobus solfataricus],2G3N_C Crystal structure of the Sulfolobus solfataricus alpha-glucosidase MalA in complex with beta-octyl-glucopyranoside [Saccharolobus solfataricus],2G3N_D Crystal structure of the Sulfolobus solfataricus alpha-glucosidase MalA in complex with beta-octyl-glucopyranoside [Saccharolobus solfataricus],2G3N_E Crystal structure of the Sulfolobus solfataricus alpha-glucosidase MalA in complex with beta-octyl-glucopyranoside [Saccharolobus solfataricus],2G3N_F Crystal structure of the Sulfolobus solfataricus alpha-glucosidase MalA in complex with beta-octyl-glucopyranoside [Saccharolobus solfataricus]
1.22e-17 153 525 206 569
Crystal structure of Family 31 alpha-glucosidase (BT_0339) from Bacteroides thetaiotaomicron [Bacteroides thetaiotaomicron VPI-5482],5F7C_B Crystal structure of Family 31 alpha-glucosidase (BT_0339) from Bacteroides thetaiotaomicron [Bacteroides thetaiotaomicron VPI-5482],5F7C_C Crystal structure of Family 31 alpha-glucosidase (BT_0339) from Bacteroides thetaiotaomicron [Bacteroides thetaiotaomicron VPI-5482],5F7C_D Crystal structure of Family 31 alpha-glucosidase (BT_0339) from Bacteroides thetaiotaomicron [Bacteroides thetaiotaomicron VPI-5482]
1.95e-13 137 648 219 779
Murine endoplasmic reticulum alpha-glucosidase II with N-9'-methoxynonyl-1-deoxynojirimycin [Mus musculus]
1.95e-13 137 648 219 779
Murine endoplasmic reticulum alpha-glucosidase II with N-butyl-1-deoxynojirimycin [Mus musculus]
1.98e-13 137 648 241 801
Murine endoplasmic reticulum alpha-glucosidase II with castanospermine [Mus musculus],5IEE_A Murine endoplasmic reticulum alpha-glucosidase II with 1-deoxynojirimycin [Mus musculus]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1.44e-19 137 648 251 811
Neutral alpha-glucosidase AB OS=Macaca fascicularis OX=9541 GN=GANAB PE=2 SV=1
1.67e-18 137 648 251 811
Neutral alpha-glucosidase AB OS=Homo sapiens OX=9606 GN=GANAB PE=1 SV=3
2.08e-18 152 508 65 448
Alpha-glucosidase OS=Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) OX=273057 GN=malA PE=1 SV=1
2.11e-18 152 508 65 448
Alpha-glucosidase OS=Saccharolobus solfataricus (strain 98/2) OX=555311 GN=malA PE=1 SV=1
2.89e-15 145 441 147 423
Alpha-xylosidase XylQ OS=Lactiplantibacillus pentosus OX=1589 GN=xylQ PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000052 0.000001

TMHMM  Annotations      help

There is no transmembrane helices in SAPIO_CDS2485-t41_1-p1.