logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: RVD86102.1

You are here: Home > Sequence: RVD86102.1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Arthrobotrys flagrans
Lineage Ascomycota; Orbiliomycetes; ; Orbiliaceae; Arthrobotrys; Arthrobotrys flagrans
CAZyme ID RVD86102.1
CAZy Family GH43
CAZyme Description unspecified product
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
807 SAEB01000006|CGC17 91610.21 5.9556
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_AflagransCBSH-5679 9927 N/A 30 9897
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in RVD86102.1.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH31 171 596 2e-115 0.9976580796252927

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
269881 GH31_u1 1.32e-169 190 494 1 304
glycosyl hydrolase family 31 (GH31); uncharacterized subgroup. This family represents an uncharacterized GH31 enzyme subgroup found in bacteria and eukaryotes. Enzymes of the GH31 family possess a wide range of different hydrolytic activities including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein.
395838 Glyco_hydro_31 1.98e-102 171 596 1 442
Glycosyl hydrolases family 31. Glycosyl hydrolases are key enzymes of carbohydrate metabolism. Family 31 comprises of enzymes that are, or similar to, alpha- galactosidases.
224418 YicI 1.40e-97 165 599 231 673
Alpha-glucosidase, glycosyl hydrolase family GH31 [Carbohydrate transport and metabolism].
269876 GH31 8.96e-70 191 483 1 264
glycosyl hydrolase family 31 (GH31). GH31 enzymes occur in prokaryotes, eukaryotes, and archaea with a wide range of hydrolytic activities, including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. In most cases, the pyranose moiety recognized in subsite -1 of the substrate binding site is an alpha-D-glucose, though some GH31 family members show a preference for alpha-D-xylose. Several GH31 enzymes can accommodate both glucose and xylose and different levels of discrimination between the two have been observed. Most characterized GH31 enzymes are alpha-glucosidases. In mammals, GH31 members with alpha-glucosidase activity are implicated in at least three distinct biological processes. The lysosomal acid alpha-glucosidase (GAA) is essential for glycogen degradation and a deficiency or malfunction of this enzyme causes glycogen storage disease II, also known as Pompe disease. In the endoplasmic reticulum, alpha-glucosidase II catalyzes the second step in the N-linked oligosaccharide processing pathway that constitutes part of the quality control system for glycoprotein folding and maturation. The intestinal enzymes sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) play key roles in the final stage of carbohydrate digestion, making alpha-glucosidase inhibitors useful in the treatment of type 2 diabetes. GH31 alpha-glycosidases are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues have been identified as the catalytic nucleophile and the acid/base, respectively.
269879 GH31_xylosidase_YicI 3.31e-40 191 490 1 308
alpha-xylosidase YicI-like. YicI alpha-xylosidase is a glycosyl hydrolase family 31 (GH31) enzyme that catalyzes the release of an alpha-xylosyl residue from the non-reducing end of alpha-xyloside substrates such as alpha-xylosyl fluoride and isoprimeverose. YicI forms a homohexamer (a trimer of dimers). All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. The YicI family corresponds to subgroup 4 in the Ernst et al classification of GH31 enzymes.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
0.0 1 804 1 800
0.0 1 804 1 800
0.0 1 804 1 800
0.0 1 804 1 800
0.0 1 804 223 1022

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2.33e-205 15 632 32 645
Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_B Chain B, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_C Chain C, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_D Chain D, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_E Chain E, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_F Chain F, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJA_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJB_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_B Chain B, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_C Chain C, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_D Chain D, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_E Chain E, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_F Chain F, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363]
3.71e-204 15 632 32 645
Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJD_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJE_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJF_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363]
2.38e-38 164 673 402 933
Chain A, Alpha-xylosidase [Xanthomonas citri pv. citri str. 306],7KNC_A Chain A, Alpha-xylosidase [Xanthomonas citri pv. citri str. 306]
1.71e-36 156 639 391 913
crystal structure of alpha-xylosidase (GH31) from Cellvibrio japonicus [Cellvibrio japonicus],2XVK_A crystal structure of alpha-xylosidase (GH31) from Cellvibrio japonicus in complex with 5-fluoro-alpha-D-xylopyranosyl fluoride [Cellvibrio japonicus],2XVL_A crystal structure of alpha-xylosidase (GH31) from Cellvibrio japonicus in complex with Pentaerythritol propoxylate (5 4 PO OH) [Cellvibrio japonicus]
1.88e-35 171 597 234 673
Crystal Structure of Apo Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31 [Cellvibrio japonicus],4B9Z_A Crystal Structure of Agd31B, alpha-transglucosylase, complexed with Acarbose [Cellvibrio japonicus],4BA0_A Crystal Structure of Agd31B, alpha-transglucosylase, complexed with 5F-alpha-GlcF [Cellvibrio japonicus]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3.23e-43 164 632 186 657
Alpha-xylosidase OS=Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) OX=273057 GN=xylS PE=1 SV=1
8.86e-37 171 618 257 717
Alpha-xylosidase OS=Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) OX=227321 GN=agdD PE=1 SV=1
9.63e-35 171 597 234 673
Oligosaccharide 4-alpha-D-glucosyltransferase OS=Cellvibrio japonicus (strain Ueda107) OX=498211 GN=agd31B PE=1 SV=1
1.16e-34 165 598 227 676
Alpha-glucosidase 2 OS=Bacillus thermoamyloliquefaciens OX=1425 PE=3 SV=1
1.80e-32 171 602 239 675
Alpha-xylosidase OS=Escherichia coli (strain K12) OX=83333 GN=yicI PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000045 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in RVD86102.1.