logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: PUG3_T000495-RA-p1

You are here: Home > Sequence: PUG3_T000495-RA-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Globisporangium ultimum
Lineage Oomycota; NA; ; Pythiaceae; Globisporangium; Globisporangium ultimum
CAZyme ID PUG3_T000495-RA-p1
CAZy Family AA17
CAZyme Description Lysosomal alpha-mannosidase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
1036 117727.48 6.1583
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_GultimumBR650 14086 1223559 0 14086
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.24:47 3.2.1.113:25 3.2.1.114:7

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH38 46 348 2e-71 0.9962825278810409

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
212121 GH38N_AMII_LAM_like 4.95e-152 45 312 1 278
N-terminal catalytic domain of lysosomal alpha-mannosidase and similar proteins; glycoside hydrolase family 38 (GH38). The subfamily is represented by lysosomal alpha-mannosidase (LAM, Man2B1, EC 3.2.1.114), which is a broad specificity exoglycosidase hydrolyzing all known alpha 1,2-, alpha 1,3-, and alpha 1,6-mannosidic linkages from numerous high mannose type oligosaccharides. LAM is expressed in all tissues and in many species. In mammals, the absence of LAM can cause the autosomal recessive disease alpha-mannosidosis. LAM has an acidic pH optimum at 4.0-4.5. It is stimulated by zinc ion and is inhibited by cobalt ion and plant alkaloids, such as swainsonine (SW). LAM catalyzes hydrolysis by a double displacement mechanism in which a glycosyl-enzyme intermediate is formed and hydrolyzed via oxacarbenium ion-like transition states. A carboxylic acid in the active site acts as the catalytic nucleophile in the formation of the covalent intermediate while a second carboxylic acid acts as a general acid catalyst. The same residue is thought to assist in the hydrolysis (deglycosylation) step, this time acting as a general base.
212095 GH38N_AMII_euk 1.49e-106 45 311 1 257
N-terminal catalytic domain of eukaryotic class II alpha-mannosidases; glycoside hydrolase family 38 (GH38). The family corresponds to a group of eukaryotic class II alpha-mannosidases (AlphaMII), which contain Golgi alpha-mannosidases II (GMII), the major broad specificity lysosomal alpha-mannosidases (LAM, MAN2B1), the noval core-specific lysosomal alpha 1,6-mannosidases (Epman, MAN2B2), and similar proteins. GMII catalyzes the hydrolysis of the terminal both alpha-1,3-linked and alpha-1,6-linked mannoses from the high-mannose oligosaccharide GlcNAc(Man)5(GlcNAc)2 to yield GlcNAc(Man)3(GlcNAc)2 (GlcNAc, N-acetylglucosmine), which is the committed step of complex N-glycan synthesis. LAM is a broad specificity exoglycosidase hydrolyzing all known alpha 1,2-, alpha 1,3-, and alpha 1,6-mannosidic linkages from numerous high mannose type oligosaccharides. Different from LAM, Epman can efficiently cleave only the alpha 1,6-linked mannose residue from (Man)3GlcNAc, but not (Man)3(GlcNAc)2 or other larger high mannose oligosaccharides, in the core of N-linked glycans. Members in this family are retaining glycosyl hydrolases of family GH38 that employs a two-step mechanism involving the formation of a covalent glycosyl enzyme complex. Two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst.
178304 PLN02701 4.01e-87 19 798 15 858
alpha-mannosidase
395852 Glyco_hydro_38 4.39e-87 46 348 1 271
Glycosyl hydrolases family 38 N-terminal domain. Glycosyl hydrolases are key enzymes of carbohydrate metabolism.
212120 GH38N_AMII_GMII_SfManIII_like 1.37e-73 44 359 1 340
N-terminal catalytic domain of Golgi alpha-mannosidase II, Spodoptera frugiperda Sf9 alpha-mannosidase III, and similar proteins; glycoside hydrolase family 38 (GH38). This subfamily is represented by Golgi alpha-mannosidase II (GMII, also known as mannosyl-oligosaccharide 1,3- 1,6-alpha mannosidase, EC 3.2.1.114, Man2A1), a monomeric, membrane-anchored class II alpha-mannosidase existing in the Golgi apparatus of eukaryotes. GMII plays a key role in the N-glycosylation pathway. It catalyzes the hydrolysis of the terminal both alpha-1,3-linked and alpha-1,6-linked mannoses from the high-mannose oligosaccharide GlcNAc(Man)5(GlcNAc)2 to yield GlcNAc(Man)3(GlcNAc)2(GlcNAc, N-acetylglucosmine), which is the committed step of complex N-glycan synthesis. GMII is activated by zinc or cobalt ions and is strongly inhibited by swainsonine. Inhibition of GMII provides a route to block cancer-induced changes in cell surface oligosaccharide structures. GMII has a pH optimum of 5.5-6.0, which is intermediate between those of acidic (lysosomal alpha-mannosidase) and neutral (ER/cytosolic alpha-mannosidase) enzymes. GMII is a retaining glycosyl hydrolase of family GH38 that employs a two-step mechanism involving the formation of a covalent glycosyl enzyme complex; two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst. This subfamily also includes human alpha-mannosidase 2x (MX, also known as mannosyl-oligosaccharide 1,3- 1,6-alpha mannosidase, EC 3.2.1.114, Man2A2). MX is enzymatically and functionally very similar to GMII, and is thought to also function in the N-glycosylation pathway. Also found in this subfamily is class II alpha-mannosidase encoded by Spodoptera frugiperda Sf9 cell. This alpha-mannosidase is an integral membrane glycoprotein localized in the Golgi apparatus. It shows high sequence homology with mammalian Golgi alpha-mannosidase II(GMII). It can hydrolyze p-nitrophenyl alpha-D-mannopyranoside (pNP-alpha-Man), and it is inhibited by swainsonine. However, the Sf9 enzyme is stimulated by cobalt and can hydrolyze (Man)5(GlcNAc)2 to (Man)3(GlcNAc)2, but it cannot hydrolyze GlcNAc(Man)5(GlcNAc)2, which is distinct from that of GMII. Thus, this enzyme has been designated as Sf9 alpha-mannosidase III (SfManIII). It probably functions in an alternate N-glycan processing pathway in Sf9 cells.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
0.0 68 991 1 952
0.0 21 990 23 1009
2.49e-297 16 954 14 930
3.96e-251 27 991 26 962
8.50e-216 33 935 50 978

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4.24e-205 33 935 2 928
Structure of GH 38 Jack Bean alpha-mannosidase [Canavalia ensiformis],6B9O_B Structure of GH 38 Jack Bean alpha-mannosidase [Canavalia ensiformis]
5.98e-205 33 935 2 928
Structure of GH 38 Jack Bean alpha-mannosidase in complex with a 36-valent iminosugar cluster inhibitor [Canavalia ensiformis],6B9P_B Structure of GH 38 Jack Bean alpha-mannosidase in complex with a 36-valent iminosugar cluster inhibitor [Canavalia ensiformis]
3.82e-73 19 806 25 858
GOLGI ALPHA-MANNOSIDASE II IN COMPLEX WITH SWAINSONINE [Drosophila melanogaster],1HXK_A Golgi Alpha-Mannosidase Ii In Complex With Deoxymannojirimicin [Drosophila melanogaster]
4.60e-73 19 806 43 876
Chain A, Alpha-mannosidase 2 [Drosophila melanogaster],6RQZ_A Chain A, Alpha-mannosidase 2 [Drosophila melanogaster],6RRH_A Chain A, Alpha-mannosidase 2 [Drosophila melanogaster],6RRJ_A Chain A, Alpha-mannosidase 2 [Drosophila melanogaster],6RRN_A Chain A, Alpha-mannosidase 2 [Drosophila melanogaster],6RRU_A Chain A, Alpha-mannosidase 2 [Drosophila melanogaster],6RRW_A Chain A, Alpha-mannosidase 2 [Drosophila melanogaster],6RRX_A Chain A, Alpha-mannosidase 2 [Drosophila melanogaster],6RRY_A Chain A, Alpha-mannosidase 2 [Drosophila melanogaster],6RS0_A Chain A, Alpha-mannosidase 2 [Drosophila melanogaster]
5.18e-73 19 806 55 888
GOLGI ALPHA-MANNOSIDASE II Covalent Intermediate Complex with 5-fluoro-gulosyl-fluoride [Drosophila melanogaster],1R33_A Golgi alpha-mannosidase II complex with 5-thio-D-mannopyranosylamine [Drosophila melanogaster],1R34_A Golgi alpha-mannosidase II complex with 5-thio-D-mannopyranosylamidinium salt [Drosophila melanogaster],1TQS_A Golgi alpha-Mannosidase II In Complex With Salacinol [Drosophila melanogaster],1TQT_A Golgi alpha-Mannosidase II In Complex With A Diastereomer of Salacinol [Drosophila melanogaster],1TQU_A Golgi alpha-Mannosidase II In Complex With The Salacinol Analog Ghavamiol [Drosophila melanogaster],1TQV_A Golgi alpha-Mannosidase II In Complex With Seleno-Salacinol (Blintol) [Drosophila melanogaster],1TQW_A Golgi alpha-Mannosidase II In Complex With A Diastereomer of Seleno-Salacinol [Drosophila melanogaster],2ALW_A Golgi alpha-mannosidase II complex with Noeuromycin [Drosophila melanogaster],2F18_A GOLGI ALPHA-MANNOSIDASE II complex with (2R,3R,4S)-2-({[(1R)-2-hydroxy-1-phenylethyl]amino}methyl)pyrrolidine-3,4-diol [Drosophila melanogaster],2F1A_A GOLGI ALPHA-MANNOSIDASE II COMPLEX WITH (2R,3R,4S)-2-({[(1S)-2-hydroxy-1-phenylethyl]amino}methyl)pyrrolidine-3,4-diol [Drosophila melanogaster],2F1B_A GOLGI ALPHA-MANNOSIDASE II COMPLEX WITH (2R,3R,4S,5R)-2-({[(1R)-2-hydroxy-1-phenylethyl]amino}methyl)-5-methylpyrrolidine-3,4-diol [Drosophila melanogaster],2F7O_A Golgi alpha-mannosidase II complex with mannostatin A [Drosophila melanogaster],2F7P_A Golgi alpha-mannosidase II complex with benzyl-mannostatin A [Drosophila melanogaster],2F7Q_A Golgi alpha-mannosidase II complex with aminocyclopentitetrol [Drosophila melanogaster],2F7R_A Golgi alpha-mannosidase II complex with benzyl-aminocyclopentitetrol [Drosophila melanogaster],2FYV_A Golgi alpha-mannosidase II complex with an amino-salacinol carboxylate analog [Drosophila melanogaster],2OW6_A Golgi alpha-mannosidase II complex with (1r,5s,6s,7r,8s)-1-thioniabicyclo[4.3.0]nonan-5,7,8-triol chloride [Drosophila melanogaster],2OW7_A Golgi alpha-mannosidase II complex with (1R,6S,7R,8S)-1-thioniabicyclo[4.3.0]nonan-7,8-diol chloride [Drosophila melanogaster],3BLB_A Crystal structure of Golgi Mannosidase II in complex with swainsonine at 1.3 Angstrom resolution [Drosophila melanogaster],3BUB_A Golgi alpha-mannosidase II with an empty active site [Drosophila melanogaster],3D4Y_A GOLGI MANNOSIDASE II complex with mannoimidazole [Drosophila melanogaster],3D4Z_A GOLGI MANNOSIDASE II complex with gluco-imidazole [unidentified],3D50_A GOLGI MANNOSIDASE II complex with N-octyl-6-epi-valienamine [Drosophila melanogaster],3D51_A GOLGI MANNOSIDASE II complex with gluco-hydroxyiminolactam [Drosophila melanogaster],3D52_A GOLGI MANNOSIDASE II complex with an N-aryl carbamate derivative of gluco-hydroxyiminolactam [Drosophila melanogaster],3DDF_A GOLGI MANNOSIDASE II complex with (3R,4R,5R)-3,4-Dihydroxy-5-({[(1R)-2-hydroxy-1 phenylethyl]amino}methyl) pyrrolidin-2-one [Drosophila melanogaster],3DDG_A GOLGI MANNOSIDASE II complex with (3R,4R,5R)-3,4-Dihydroxy-5-({[(1R)-2-hydroxy-1 phenylethyl]amino}methyl) methylpyrrolidin-2-one [Drosophila melanogaster],3DX0_A Golgi alpha-Mannosidase II in complex with Mannostatin A at pH 5.75 [Drosophila melanogaster],3DX1_A Golgi alpha-Mannosidase II in complex with Mannostatin analog (1S,2S,3R,4R)-4-aminocyclopentane-1,2,3-triol [Drosophila melanogaster],3DX2_A Golgi mannosidase II complex with MANNOSTATIN B [Drosophila melanogaster],3DX4_A Golgi alpha-Mannosidase II in complex with Mannostatin analog (1R,2R,3R,4S,5R)-4-amino-5-methoxycyclopentane-1,2,3-triol [Drosophila melanogaster],3EJP_A Golgi alpha-Mannosidase II in complex with 5-substituted swainsonine analog: (5R)-5-[2'-oxo-2'-(phenyl)ethyl]-swainsonine [Drosophila melanogaster],3EJQ_A Golgi alpha-Mannosidase II in complex with 5-substitued swainsonine analog: (5R)-5-[2'-oxo-2'-(4-methylphenyl)ethyl]-swainsonine [Drosophila melanogaster],3EJR_A Golgi alpha-Mannosidase II in complex with 5-substitued swainsonine analog: (5R)-5-[2'-oxo-2'-(4-tert-butylphenyl)ethyl]-swainsonine [Drosophila melanogaster],3EJS_A Golgi alpha-Mannosidase II in complex with 5-substituted swainsonine analog: (5S)-5-[2'-(4-tert-butylphenyl)ethyl]-swainsonine [Drosophila melanogaster],3EJT_A Golgi alpha-Mannosidase II in complex with 5-substituted swainsonine analog:(5R)-5-[2'-(4-tert-butylphenyl)ethyl]-swainsonine [Drosophila melanogaster],3EJU_A Golgi alpha-Mannosidase II in complex with 5-substituted swainsonine analog:(5S)-5-[2'-oxo-2'-(4-tert-butylphenyl)ethyl]-swainsonine [Drosophila melanogaster]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1.78e-212 34 935 26 953
Probable alpha-mannosidase At5g13980 OS=Arabidopsis thaliana OX=3702 GN=At5g13980 PE=2 SV=1
1.39e-206 33 992 26 1008
Alpha-mannosidase At3g26720 OS=Arabidopsis thaliana OX=3702 GN=At3g26720 PE=1 SV=1
6.86e-205 32 994 34 1042
Probable alpha-mannosidase At5g66150 OS=Arabidopsis thaliana OX=3702 GN=At5g66150 PE=3 SV=1
5.47e-198 33 920 2 915
Alpha-mannosidase OS=Canavalia ensiformis OX=3823 PE=1 SV=1
8.62e-186 32 983 48 997
Lysosomal alpha-mannosidase OS=Cavia porcellus OX=10141 GN=MAN2B1 PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000046 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in PUG3_T000495-RA-p1.