logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: POW17491.1

You are here: Home > Sequence: POW17491.1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Puccinia striiformis
Lineage Basidiomycota; Pucciniomycetes; ; Pucciniaceae; Puccinia; Puccinia striiformis
CAZyme ID POW17491.1
CAZy Family GH47
CAZyme Description unspecified product
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
650 72481.81 7.0037
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_Pstriiformis93TX-2 14629 N/A 0 14629
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in POW17491.1.

CAZyme Signature Domains help

Family Start End Evalue family coverage
AA1 70 643 3.2e-71 0.946927374301676

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
259950 CuRO_2_Diphenol_Ox 2.06e-84 178 342 1 162
The second cupredoxin domain of fungal laccase, diphenol oxidase. Diphenol oxidase belongs to the laccase family. It catalyzes the initial steps in melanin biosynthesis from diphenols. Melanin is one of the virulence factors of infectious fungi. In the pathogenesis of C. neoformans, melanin pigments have been shown to protect the fungal cells from oxidative and microbicidal activities of host defense systems. Laccase is a blue multi-copper enzyme that catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. It has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism. Laccase is a multicopper oxidase (MCO) composed of three cupredoxin domains that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper.
259971 CuRO_3_Diphenol_Ox 2.36e-63 512 643 1 140
The third cupredoxin domain of fungal laccase, diphenol oxidase. Diphenol oxidase belongs to the laccase family. It catalyzes the initial steps in melanin biosynthesis from diphenols. Melanin is one of the virulence factors of infectious fungi. In the pathogenesis of C. neoformans, melanin pigments have been shown to protect the fungal cells from oxidative and microbicidal activities of host defense systems. Laccase is a blue multicopper oxidase (MCO) which catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. It has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 3 of 3-domain MCOs contains the Type 1 (T1) copper binding site and part the trinuclear copper binding site, which is located at the interface of domains 1 and 3.
259926 CuRO_1_Diphenol_Ox 4.63e-39 60 154 1 94
The first cupredoxin domain of fungal laccase, diphenol oxidase. Diphenol oxidase belongs to the laccase family. It catalyzes the initial steps in melanin biosynthesis from diphenols. Melanin is one of the virulence factors of infectious fungi. In the pathogenesis of C. neoformans, melanin pigments have been shown to protect the fungal cells from oxidative and microbicidal activities of host defense systems. Laccase is a blue multicopper oxidase (MCO) which catalyzes the oxidation of a variety aromatic - notably phenolic and inorganic substances coupled to the reduction of molecular oxygen to water. It has been implicated in a wide spectrum of biological activities and, in particular, plays a key role in morphogenesis, development and lignin metabolism. Although MCOs have diverse functions, majority of them have three cupredoxin domain repeats that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 1 of 3-domain MCOs contains part the trinuclear copper binding site, which is located at the interface of domains 1 and 3.
274556 laccase 5.66e-39 50 643 7 501
laccase, plant. Members of this protein family include the copper-containing enzyme laccase (EC 1.10.3.2), often several from a single plant species, and additional, uncharacterized, closely related plant proteins termed laccase-like multicopper oxidases. This protein family shows considerable sequence similarity to the L-ascorbate oxidase (EC 1.10.3.3) family. Laccases are enzymes of rather broad specificity, and classification of all proteins scoring about the trusted cutoff of this model as laccases may be appropriate.
259953 CuRO_2_MCO_like_1 4.67e-38 178 342 1 161
The second cupredoxin domain of uncharacterized multicopper oxidase. Multicopper Oxidases (MCOs) are multi-domain enzymes that are able to couple oxidation of substrates with reduction of dioxygen to water. MCOs oxidise their substrate by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear copper centre which binds a dioxygen. The dioxygen, following the transfer of four electrons, is reduced to two molecules of water. These MCOs are capable of oxidizing a vast range of substrates, varying from aromatic to inorganic compounds such as metals. This family of MCOs is composed of three cupredoxin domains that include one mononuclear and one trinuclear copper center. The copper ions are bound in several sites: Type 1, Type 2, and/or Type 3. The ensemble of types 2 and 3 copper is called a trinuclear cluster. MCOs oxidize their substrate by accepting electrons at a mononuclear copper center and transferring them to the active site trinuclear copper center. The cupredoxin domain 2 of 3-domain MCOs has lost the ability to bind copper.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
5.34e-108 42 643 38 547
6.76e-106 42 643 50 555
3.70e-105 43 643 33 528
7.30e-105 43 643 33 528
2.85e-104 43 643 33 528

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5.25e-33 28 368 31 372
Crystal structure of laccase from Botrytis aclada at 1.67 A resolution [Botrytis aclada],4X4K_A Structure of laccase from Botrytis aclada with full copper content [Botrytis aclada]
5.25e-33 28 368 31 372
Structure of the L499M mutant of the laccase from B.aclada [Botrytis aclada]
7.31e-33 63 323 7 264
T2-depleted laccase from Coriolopsis caperata soaked with CuCl [Coriolopsis caperata],4JHV_A T2-depleted laccase from Coriolopsis caperata [Coriolopsis caperata]
9.67e-33 60 383 24 335
Crystal structure of a laccase-like multicopper oxidase McoG from from Aspergillus niger [Aspergillus niger]
9.76e-33 60 383 25 336
Crystal structure of a laccase-like multicopper oxidase McoG from Aspergillus niger bound to zinc [Aspergillus niger]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5.26e-72 10 641 9 540
Laccase-2 OS=Cryptococcus neoformans var. grubii serotype A (strain H99 / ATCC 208821 / CBS 10515 / FGSC 9487) OX=235443 GN=LAC2 PE=3 SV=2
7.34e-70 8 641 7 540
Laccase-1 OS=Cryptococcus neoformans var. grubii serotype A (strain H99 / ATCC 208821 / CBS 10515 / FGSC 9487) OX=235443 GN=LAC1 PE=1 SV=1
3.81e-68 8 641 7 540
Laccase-1 OS=Cryptococcus neoformans var. neoformans serotype D (strain B-3501A) OX=283643 GN=LAC1 PE=1 SV=1
2.20e-35 27 641 39 528
Oxydoreductase ptaK OS=Pestalotiopsis fici (strain W106-1 / CGMCC3.15140) OX=1229662 GN=ptaK PE=2 SV=2
1.03e-34 44 384 56 390
Oxidoreductase OpS5 OS=Beauveria bassiana (strain ARSEF 2860) OX=655819 GN=OpS5 PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI CS Position
0.000282 0.999665 CS pos: 22-23. Pr: 0.9837

TMHMM  Annotations      help

There is no transmembrane helices in POW17491.1.