Species | Phytophthora cinnamomi | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Oomycota; NA; ; Peronosporaceae; Phytophthora; Phytophthora cinnamomi | |||||||||||
CAZyme ID | PHYCI_91325T0-p1 | |||||||||||
CAZy Family | GT43 | |||||||||||
CAZyme Description | unspecified product | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location |
EC | 2.4.1.34:28 |
---|
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GT48 | 847 | 1590 | 1.5e-273 | 0.9621109607577808 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
396784 | Glucan_synthase | 0.0 | 848 | 1529 | 3 | 701 | 1,3-beta-glucan synthase component. This family consists of various 1,3-beta-glucan synthase components including Gls1, Gls2 and Gls3 from yeast. 1,3-beta-glucan synthase EC:2.4.1.34 also known as callose synthase catalyzes the formation of a beta-1,3-glucan polymer that is a major component of the fungal cell wall. The reaction catalyzed is:- UDP-glucose + {(1,3)-beta-D-glucosyl}(N) <=> UDP + {(1,3)-beta-D-glucosyl}(N+1). |
405046 | FKS1_dom1 | 5.18e-26 | 159 | 252 | 6 | 106 | 1,3-beta-glucan synthase subunit FKS1, domain-1. The FKS1_dom1 domain is likely to be the 'Class I' region just N-terminal to the first set of transmembrane helices that is involved in 1,3-beta-glucan synthesis itself. This family is found on proteins with family Glucan_synthase, pfam02364. |
340916 | MFS_GLUT6_8_Class3_like | 1.04e-19 | 1743 | 2117 | 2 | 387 | Glucose transporter (GLUT) types 6 and 8, Class 3 GLUTs, and similar transporters of the Major Facilitator Superfamily. This subfamily is composed of glucose transporter type 6 (GLUT6), GLUT8, plant early dehydration-induced gene ERD6-like proteins, and similar insect proteins including facilitated trehalose transporter Tret1-1. GLUTs, also called Solute carrier family 2, facilitated glucose transporters (SLC2A), are a family of proteins that facilitate the transport of hexoses such as glucose and fructose. There are fourteen GLUTs found in humans; they display different substrate specificities and tissue expression. They have been categorized into three classes based on sequence similarity: Class 1 (GLUTs 1-4, 14); Class 2 (GLUTs 5, 7, 9, and 11); and Class 3 (GLUTs 6, 8, 10, 12, and HMIT). Insect Tret1-1 is a low-capacity facilitative transporter for trehalose that mediates the transport of trehalose synthesized in the fat body and the incorporation of trehalose into other tissues that require a carbon source. GLUT proteins are comprised of about 500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 transmembrane segments. They belong to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. |
395036 | Sugar_tr | 3.77e-18 | 1744 | 2149 | 1 | 428 | Sugar (and other) transporter. |
340915 | MFS_GLUT_Class1_2_like | 3.01e-15 | 1749 | 2093 | 6 | 377 | Class 1 and Class 2 Glucose transporters (GLUTs) of the Major Facilitator Superfamily. This subfamily includes Class 1 and Class 2 glucose transporters (GLUTs) including Solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1, also called glucose transporter type 1 or GLUT1), SLC2A2-5 (GLUT2-5), SLC2A7 (GLUT7), SLC2A9 (GLUT9), SLC2A11 (GLUT11), SLC2A14 (GLUT14), and similar proteins. GLUTs are a family of proteins that facilitate the transport of hexoses such as glucose and fructose. There are fourteen GLUTs found in humans; they display different substrate specificities and tissue expression. They have been categorized into three classes based on sequence similarity: Class 1 (GLUTs 1-4, 14); Class 2 (GLUTs 5, 7, 9, and 11); and Class 3 (GLUTs 6, 8, 10, 12, and HMIT). GLUTs 1-5 are the most thoroughly studied and are well-established as glucose and/or fructose transporters in various tissues and cell types. GLUT proteins are comprised of about 500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 transmembrane segments. They belong to the Glucose transporter -like (GLUT-like) family of the Major Facilitator Superfamily (MFS) of membrane transport proteins. MFS proteins are thought to function through a single substrate binding site, alternating-access mechanism involving a rocker-switch type of movement. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
0.0 | 1 | 2239 | 9 | 2246 | |
0.0 | 5 | 2209 | 10 | 2227 | |
0.0 | 3 | 2233 | 14 | 2225 | |
0.0 | 3 | 2229 | 12 | 2231 | |
0.0 | 3 | 2235 | 11 | 2225 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
1.98e-234 | 71 | 1736 | 252 | 1918 | Callose synthase 7 OS=Arabidopsis thaliana OX=3702 GN=CALS7 PE=3 SV=3 |
|
1.60e-229 | 79 | 1731 | 244 | 1908 | Callose synthase 5 OS=Arabidopsis thaliana OX=3702 GN=CALS5 PE=1 SV=1 |
|
3.84e-227 | 77 | 1736 | 253 | 1878 | Callose synthase 9 OS=Arabidopsis thaliana OX=3702 GN=CALS9 PE=2 SV=2 |
|
2.74e-225 | 68 | 1736 | 234 | 1939 | Callose synthase 3 OS=Arabidopsis thaliana OX=3702 GN=CALS3 PE=3 SV=3 |
|
1.66e-223 | 68 | 1736 | 230 | 1934 | Callose synthase 1 OS=Arabidopsis thaliana OX=3702 GN=CALS1 PE=1 SV=2 |
Other | SP_Sec_SPI | CS Position |
---|---|---|
1.000050 | 0.000000 |
Start | End |
---|---|
286 | 308 |
340 | 362 |
382 | 404 |
419 | 441 |
476 | 498 |
513 | 535 |
1283 | 1305 |
1353 | 1375 |
1382 | 1404 |
1445 | 1464 |
1485 | 1507 |
1590 | 1612 |
1625 | 1647 |
1697 | 1719 |
1739 | 1761 |
1790 | 1812 |
1817 | 1835 |
1845 | 1867 |
1880 | 1899 |
1904 | 1926 |
1977 | 1999 |
2012 | 2031 |
2038 | 2056 |
2071 | 2093 |
2105 | 2127 |
2137 | 2159 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.