logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: PHYCI_237781T0-p1

You are here: Home > Sequence: PHYCI_237781T0-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Phytophthora cinnamomi
Lineage Oomycota; NA; ; Peronosporaceae; Phytophthora; Phytophthora cinnamomi
CAZyme ID PHYCI_237781T0-p1
CAZy Family GH16
CAZyme Description Beta-fructofuranosidase (invertase)
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
630 70304.99 6.2056
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_PcinnamomiCBS144-22 26201 1048749 70 26131
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.26:2

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 46 376 2.5e-58 0.9590443686006825

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
350133 GH32_XdINV-like 4.09e-121 53 376 2 335
glycoside hydrolase family 32 protein such as Xanthophyllomyces dendrorhous beta-fructofuranosidase (Inv;Xd-INV;XdINV). This subfamily of glycosyl hydrolase family GH32 includes fructan:fructan 1-fructosyltransferase (FT, EC 2.4.1.100) and beta-fructofuranosidase (invertase or Inv, EC 3.2.1.26), among others. These enzymes cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. Xanthophyllomyces dendrorhous beta-fructofuranosidase (XdINV) also catalyzes the synthesis of fructooligosaccharides (FOS, a beneficial prebiotic), producing neo-FOS, making it an interesting biotechnology target. Structural studies show plasticity of its active site, having a flexible loop that is essential in binding sucrose and beta(2-1)-linked oligosaccharide, making it a valuable biocatalyst to produce novel bioconjugates. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
350110 GH32_FFase 8.33e-68 53 376 2 281
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
214757 Glyco_32 2.30e-61 46 568 1 436
Glycosyl hydrolases family 32.
224536 SacC 9.86e-53 39 597 26 478
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].
273554 scrB_fam 7.30e-44 42 578 14 444
sucrose-6-phosphate hydrolase. [Energy metabolism, Biosynthesis and degradation of polysaccharides]

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
6.85e-298 1 609 1 610
1.03e-162 37 615 29 598
1.02e-133 37 610 28 596
1.54e-81 28 610 27 616
1.57e-78 53 190 1 138

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1.04e-52 37 612 61 641
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S82_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
1.04e-52 37 612 61 641
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5ANN_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
1.27e-51 37 612 59 639
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FK7_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5FK8_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FK8_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5FKB_A Chain A, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FKB_B Chain B, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FKC_A Chain A, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FKC_B Chain B, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FMC_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FMC_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
1.30e-51 37 612 61 641
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5NSL_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5O47_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5O47_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6FJE_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6FJE_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6FJG_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6FJG_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6S2G_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S2G_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6S2H_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S2H_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6S3Z_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S3Z_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
1.30e-51 37 612 61 641
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FIX_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5FMB_A Chain A, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FMB_B Chain B, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FMD_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FMD_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3.50e-32 42 603 104 622
Acid beta-fructofuranosidase OS=Solanum lycopersicum OX=4081 GN=TIV1 PE=2 SV=1
2.19e-31 42 578 116 603
Acid beta-fructofuranosidase OS=Vigna radiata var. radiata OX=3916 GN=INVA PE=1 SV=1
1.21e-30 42 578 108 595
Acid beta-fructofuranosidase OS=Vicia faba OX=3906 GN=VCINV PE=2 SV=1
2.29e-29 29 578 92 599
Acid beta-fructofuranosidase 3, vacuolar OS=Arabidopsis thaliana OX=3702 GN=BFRUCT3 PE=2 SV=1
5.77e-29 31 578 116 618
Beta-fructofuranosidase, soluble isoenzyme I OS=Daucus carota OX=4039 GN=INV*DC4 PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI CS Position
0.000236 0.999760 CS pos: 26-27. Pr: 0.9706

TMHMM  Annotations      help

There is no transmembrane helices in PHYCI_237781T0-p1.