logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: PHYBL_174946T0-p1

You are here: Home > Sequence: PHYBL_174946T0-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Phycomyces blakesleeanus
Lineage Mucoromycota; Mucoromycetes; ; Phycomycetaceae; Phycomyces; Phycomyces blakesleeanus
CAZyme ID PHYBL_174946T0-p1
CAZy Family GH47
CAZyme Description Beta-fructofuranosidase (invertase)
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
631 PblaNRRL1555-_SC34|CGC1 71060.08 5.8909
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_PblakesleeanusNRRL1555 16528 763407 0 16528
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in PHYBL_174946T0-p1.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 57 404 3.8e-66 0.9692832764505119

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
350133 GH32_XdINV-like 1.16e-130 63 403 1 337
glycoside hydrolase family 32 protein such as Xanthophyllomyces dendrorhous beta-fructofuranosidase (Inv;Xd-INV;XdINV). This subfamily of glycosyl hydrolase family GH32 includes fructan:fructan 1-fructosyltransferase (FT, EC 2.4.1.100) and beta-fructofuranosidase (invertase or Inv, EC 3.2.1.26), among others. These enzymes cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. Xanthophyllomyces dendrorhous beta-fructofuranosidase (XdINV) also catalyzes the synthesis of fructooligosaccharides (FOS, a beneficial prebiotic), producing neo-FOS, making it an interesting biotechnology target. Structural studies show plasticity of its active site, having a flexible loop that is essential in binding sucrose and beta(2-1)-linked oligosaccharide, making it a valuable biocatalyst to produce novel bioconjugates. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
214757 Glyco_32 3.75e-79 57 586 1 436
Glycosyl hydrolases family 32.
350110 GH32_FFase 4.29e-68 63 401 1 281
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
395193 Glyco_hydro_32N 8.60e-63 57 401 1 297
Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure.
224536 SacC 1.06e-51 45 621 21 483
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
1.15e-173 25 631 4 586
3.56e-87 19 625 36 659
1.85e-85 44 631 49 668
1.10e-84 53 609 43 592
2.79e-83 44 631 49 668

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1.03e-77 47 623 60 634
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S82_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
1.03e-77 47 623 60 634
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5ANN_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
1.40e-76 47 623 58 632
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FK7_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5FK8_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FK8_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5FKB_A Chain A, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FKB_B Chain B, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FKC_A Chain A, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FKC_B Chain B, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FMC_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FMC_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
1.46e-76 47 623 60 634
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FIX_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5FMB_A Chain A, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FMB_B Chain B, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FMD_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FMD_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
1.46e-76 47 623 60 634
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5NSL_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5O47_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5O47_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6FJE_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6FJE_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6FJG_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6FJG_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6S2G_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S2G_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6S2H_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S2H_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6S3Z_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S3Z_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4.78e-36 53 620 35 507
Levanase OS=Bacillus subtilis (strain 168) OX=224308 GN=sacC PE=1 SV=1
1.74e-35 31 597 85 600
Acid beta-fructofuranosidase 3, vacuolar OS=Arabidopsis thaliana OX=3702 GN=BFRUCT3 PE=2 SV=1
2.89e-35 36 608 87 605
Acid beta-fructofuranosidase OS=Solanum lycopersicum OX=4081 GN=TIV1 PE=2 SV=1
3.41e-34 33 597 96 604
Acid beta-fructofuranosidase OS=Vigna radiata var. radiata OX=3916 GN=INVA PE=1 SV=1
3.46e-34 45 597 108 606
Acid beta-fructofuranosidase OS=Phaseolus vulgaris OX=3885 PE=2 SV=1

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI CS Position
0.000185 0.999809 CS pos: 25-26. Pr: 0.9767

TMHMM  Annotations      help

There is no transmembrane helices in PHYBL_174946T0-p1.