logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: P170DRAFT_386012-t37_1-p1

You are here: Home > Sequence: P170DRAFT_386012-t37_1-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Aspergillus steynii
Lineage Ascomycota; Eurotiomycetes; ; Aspergillaceae; Aspergillus; Aspergillus steynii
CAZyme ID P170DRAFT_386012-t37_1-p1
CAZy Family GH11
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
2395 269366.65 6.8221
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_AsteyniiIBT23096 13430 1392250 235 13195
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.183:18 2.4.1.-:2 2.4.1.183:36 2.4.1.-:11

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 99 496 1.9e-185 0.995
GH13 1157 1620 8.1e-71 0.98

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
200462 AmyAc_AGS 0.0 9 576 4 569
Alpha amylase catalytic domain found in Alpha 1,3-glucan synthase (also called uridine diphosphoglucose-1,3-alpha-glucan glucosyltransferase and 1,3-alpha-D-glucan synthase). Alpha 1,3-glucan synthase (AGS, EC 2.4.1.183) is an enzyme that catalyzes the reversible chemical reaction of UDP-glucose and [alpha-D-glucosyl-(1-3)]n to form UDP and [alpha-D-glucosyl-(1-3)]n+1. AGS is a component of fungal cell walls. The cell wall of filamentous fungi is composed of 10-15% chitin and 10-35% alpha-1,3-glucan. AGS is triggered in fungi as a response to cell wall stress and elongates the glucan chains in cell wall synthesis. This group includes proteins from Ascomycetes and Basidomycetes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
340822 GT5_Glycogen_synthase_DULL1-like 1.10e-107 1157 1612 2 459
Glycogen synthase GlgA and similar proteins. This family is most closely related to the GT5 family of glycosyltransferases. Glycogen synthase (EC:2.4.1.21) catalyzes the formation and elongation of the alpha-1,4-glucose backbone using ADP-glucose, the second and key step of glycogen biosynthesis. This family includes starch synthases of plants, such as DULL1 in Zea mays and glycogen synthases of various organisms.
223374 GlgA 9.10e-28 1962 2373 115 487
Glycogen synthase [Carbohydrate transport and metabolism].
223443 AmyA 3.42e-27 64 524 3 384
Glycosidase [Carbohydrate transport and metabolism].
200489 AmyAc_5 6.14e-24 64 515 2 411
Alpha amylase catalytic domain found in an uncharacterized protein family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
0.0 1 2395 1 2396
0.0 1 2395 1 2396
0.0 1 2395 1 2396
0.0 1 2395 1 2396
0.0 1 2395 1 2396

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4.13e-13 42 423 133 442
Chain A, Alpha-glycosidase [Weissella cibaria]
6.87e-13 1285 1563 131 401
Chain A, Glycogen synthase [Escherichia coli]
7.09e-13 1285 1563 131 401
Crystal Structure of Wild-type E.coli GS in complex with ADP and Glucose(wtGSb) [Escherichia coli],2R4T_A Crystal Structure of Wild-type E.coli GS in Complex with ADP and Glucose(wtGSc) [Escherichia coli],2R4U_A Crystal Structure of Wild-type E.coli GS in complex with ADP and Glucose(wtGSd) [Escherichia coli],3GUH_A Crystal Structure of Wild-type E.coli GS in complex with ADP and DGM [Escherichia coli K-12]
7.48e-13 1290 1563 188 478
Granule Bound Starch Synthase I from Cyanophora paradoxa bound to acarbose and ADP [Cyanophora paradoxa],6GNG_B Granule Bound Starch Synthase I from Cyanophora paradoxa bound to acarbose and ADP [Cyanophora paradoxa]
9.43e-13 42 423 133 442
Chain A, Alpha-glycosidase [Weissella confusa],7DCG_A Chain A, Alpha-glycosidase [Weissella cibaria],7DCH_A Chain A, Alpha-glycosidase [Weissella cibaria]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
0.0 22 2395 24 2358
Cell wall alpha-1,3-glucan synthase mok13 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=mok13 PE=3 SV=2
0.0 10 2395 13 2397
Cell wall alpha-1,3-glucan synthase mok11 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=mok11 PE=3 SV=2
0.0 8 2395 15 2410
Cell wall alpha-1,3-glucan synthase ags1 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=ags1 PE=1 SV=3
0.0 29 2393 32 2351
Cell wall alpha-1,3-glucan synthase mok12 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=mok12 PE=3 SV=1
1.59e-297 1018 2395 125 1369
Cell wall alpha-1,3-glucan synthase mok14 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=mok14 PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI CS Position
0.001008 0.998960 CS pos: 19-20. Pr: 0.9770

TMHMM  Annotations      download full data without filtering help

Start End
1071 1093
1967 1989
2004 2021
2026 2048
2058 2080
2093 2115
2142 2164
2185 2204
2219 2241
2248 2270
2293 2315
2322 2344
2364 2386