logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: OON08961.1

You are here: Home > Sequence: OON08961.1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Batrachochytrium salamandrivorans
Lineage Chytridiomycota; Chytridiomycetes; ; NA; Batrachochytrium; Batrachochytrium salamandrivorans
CAZyme ID OON08961.1
CAZy Family GT39
CAZyme Description hypothetical protein, variant
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
627 69601.76 6.4470
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_BsalamandrivoransBS 10186 N/A 51 10135
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in OON08961.1.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH31 285 623 1.9e-83 0.7259953161592506

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
269885 GH31_glycosidase_Aec37 7.66e-174 305 623 1 311
E.coli Aec37-like. Glycosyl hydrolase family 31 (GH31) domain of a bacterial protein family represented by Escherichia coli protein Aec37. The gene encoding Aec37 (aec-37) is located within a genomic island (AGI-3) isolated from the extraintestinal avian pathogenic Escherichia coli strain BEN2908. The function of Aec37 and its orthologs is unknown; however, deletion of a region of the genome that includes aec-37 affects the assimilation of seven carbohydrates, decreases growth rate of the strain in minimal medium containing galacturonate or trehalose, and attenuates the virulence of E. coli BEN2908 in chickens. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein.
224418 YicI 5.25e-106 126 622 99 553
Alpha-glucosidase, glycosyl hydrolase family GH31 [Carbohydrate transport and metabolism].
395838 Glyco_hydro_31 6.26e-88 286 622 1 325
Glycosyl hydrolases family 31. Glycosyl hydrolases are key enzymes of carbohydrate metabolism. Family 31 comprises of enzymes that are, or similar to, alpha- galactosidases.
269890 GH31_glucosidase_II_MalA 7.62e-69 305 622 1 308
Alpha-glucosidase II-like. Alpha-glucosidase II (alpha-D-glucoside glucohydrolase) is a glycosyl hydrolase family 31 (GH31) enzyme, found in bacteria and plants, which has exo-alpha-1,4-glucosidase and oligo-1,6-glucosidase activities. Alpha-glucosidase II has been characterized in Bacillus thermoamyloliquefaciens where it forms a homohexamer. This subgroup also includes the MalA alpha-glucosidase from Sulfolobus solfataricus and the AglA alpha-glucosidase from Picrophilus torridus. MalA is part of the carbohydrate-metabolizing machinery that allows this organism to utilize carbohydrates, such as maltose, as the sole carbon and energy source.
269876 GH31 3.26e-60 305 627 1 261
glycosyl hydrolase family 31 (GH31). GH31 enzymes occur in prokaryotes, eukaryotes, and archaea with a wide range of hydrolytic activities, including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. In most cases, the pyranose moiety recognized in subsite -1 of the substrate binding site is an alpha-D-glucose, though some GH31 family members show a preference for alpha-D-xylose. Several GH31 enzymes can accommodate both glucose and xylose and different levels of discrimination between the two have been observed. Most characterized GH31 enzymes are alpha-glucosidases. In mammals, GH31 members with alpha-glucosidase activity are implicated in at least three distinct biological processes. The lysosomal acid alpha-glucosidase (GAA) is essential for glycogen degradation and a deficiency or malfunction of this enzyme causes glycogen storage disease II, also known as Pompe disease. In the endoplasmic reticulum, alpha-glucosidase II catalyzes the second step in the N-linked oligosaccharide processing pathway that constitutes part of the quality control system for glycoprotein folding and maturation. The intestinal enzymes sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) play key roles in the final stage of carbohydrate digestion, making alpha-glucosidase inhibitors useful in the treatment of type 2 diabetes. GH31 alpha-glycosidases are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues have been identified as the catalytic nucleophile and the acid/base, respectively.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
5.78e-163 121 625 62 578
3.55e-146 124 622 79 587
1.96e-128 114 627 59 592
6.50e-127 118 623 57 586
7.50e-127 118 623 57 586

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
9.44e-43 195 620 158 568
Flavobacterium johnsoniae GH31 dextranase, FjDex31A [Flavobacterium johnsoniae UW101],6JR6_B Flavobacterium johnsoniae GH31 dextranase, FjDex31A [Flavobacterium johnsoniae UW101],6JR6_C Flavobacterium johnsoniae GH31 dextranase, FjDex31A [Flavobacterium johnsoniae UW101],6JR6_D Flavobacterium johnsoniae GH31 dextranase, FjDex31A [Flavobacterium johnsoniae UW101],6JR7_A Flavobacterium johnsoniae GH31 dextranase, FjDex31A, complexed with glucose [Flavobacterium johnsoniae UW101],6JR7_B Flavobacterium johnsoniae GH31 dextranase, FjDex31A, complexed with glucose [Flavobacterium johnsoniae UW101],6JR7_C Flavobacterium johnsoniae GH31 dextranase, FjDex31A, complexed with glucose [Flavobacterium johnsoniae UW101],6JR7_D Flavobacterium johnsoniae GH31 dextranase, FjDex31A, complexed with glucose [Flavobacterium johnsoniae UW101]
1.02e-41 195 620 158 568
Flavobacterium johnsoniae GH31 dextranase, FjDex31A, mutant D412A complexed with isomaltotriose [Flavobacterium johnsoniae UW101],6JR8_B Flavobacterium johnsoniae GH31 dextranase, FjDex31A, mutant D412A complexed with isomaltotriose [Flavobacterium johnsoniae UW101],6JR8_C Flavobacterium johnsoniae GH31 dextranase, FjDex31A, mutant D412A complexed with isomaltotriose [Flavobacterium johnsoniae UW101],6JR8_D Flavobacterium johnsoniae GH31 dextranase, FjDex31A, mutant D412A complexed with isomaltotriose [Flavobacterium johnsoniae UW101]
1.28e-40 180 620 49 472
Crystal structure of Family 31 alpha-glucosidase (BT_3299) from Bacteroides thetaiotaomicron [Bacteroides thetaiotaomicron VPI-5482],5DJW_B Crystal structure of Family 31 alpha-glucosidase (BT_3299) from Bacteroides thetaiotaomicron [Bacteroides thetaiotaomicron VPI-5482]
2.59e-39 197 627 156 560
Crystal Structure of Apo Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31 [Cellvibrio japonicus],4B9Z_A Crystal Structure of Agd31B, alpha-transglucosylase, complexed with Acarbose [Cellvibrio japonicus],4BA0_A Crystal Structure of Agd31B, alpha-transglucosylase, complexed with 5F-alpha-GlcF [Cellvibrio japonicus]
2.74e-39 197 627 133 537
Crystal Structure of Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31, in complex with Cyclophellitol Aziridine probe CF022 [Cellvibrio japonicus Ueda107],5I24_A Crystal Structure of Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31, in complex with Cyclophellitol Aziridine probe CF021 [Cellvibrio japonicus Ueda107],5NPB_A Crystal Structure of cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with alpha Cyclophellitol Cyclosulfate probe ME647 [Cellvibrio japonicus],5NPE_A Crystal Structure of cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with beta Cyclophellitol Aziridine probe KY358 [Cellvibrio japonicus Ueda107]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2.85e-47 194 622 148 557
Alpha-glucosidase 2 OS=Bacillus thermoamyloliquefaciens OX=1425 PE=3 SV=1
1.33e-38 197 627 156 560
Oligosaccharide 4-alpha-D-glucosyltransferase OS=Cellvibrio japonicus (strain Ueda107) OX=498211 GN=agd31B PE=1 SV=1
4.49e-34 196 622 257 691
Neutral alpha-glucosidase AB OS=Homo sapiens OX=9606 GN=GANAB PE=1 SV=3
1.42e-33 196 621 257 690
Neutral alpha-glucosidase AB OS=Sus scrofa OX=9823 GN=GANAB PE=1 SV=1
1.42e-33 196 622 257 691
Neutral alpha-glucosidase AB OS=Macaca fascicularis OX=9541 GN=GANAB PE=2 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000037 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in OON08961.1.