Species | Debaryomyces fabryi | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Ascomycota; Saccharomycetes; ; Debaryomycetaceae; Debaryomyces; Debaryomyces fabryi | |||||||||||
CAZyme ID | KSA01629.1 | |||||||||||
CAZy Family | GH81 | |||||||||||
CAZyme Description | Chitobiosyldiphosphodolichol beta-mannosyltransferase | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location |
EC | 2.4.1.142:4 |
---|
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GT33 | 55 | 464 | 8e-148 | 0.9905882352941177 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
340843 | GT33_ALG1-like | 0.0 | 52 | 467 | 1 | 411 | chitobiosyldiphosphodolichol beta-mannosyltransferase and similar proteins. This family is most closely related to the GT33 family of glycosyltransferases. The yeast gene ALG1 has been shown to function as a mannosyltransferase that catalyzes the formation of dolichol pyrophosphate (Dol-PP)-GlcNAc2Man from GDP-Man and Dol-PP-Glc-NAc2, and participates in the formation of the lipid-linked precursor oligosaccharide for N-glycosylation. In humans ALG1 has been associated with the congenital disorders of glycosylation (CDG) designated as subtype CDG-Ik. |
215155 | PLN02275 | 8.20e-105 | 52 | 415 | 2 | 360 | transferase, transferring glycosyl groups |
223515 | RfaB | 4.96e-17 | 133 | 456 | 71 | 364 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
340839 | GT4_GT28_WabH-like | 5.04e-16 | 158 | 444 | 66 | 349 | family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core. |
340831 | GT4_PimA-like | 1.05e-14 | 120 | 456 | 57 | 355 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
2.42e-317 | 1 | 472 | 1 | 472 | |
4.67e-210 | 13 | 470 | 10 | 464 | |
1.89e-209 | 13 | 470 | 10 | 464 | |
4.51e-203 | 5 | 468 | 3 | 453 | |
1.40e-199 | 5 | 468 | 3 | 453 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
4.30e-318 | 1 | 472 | 1 | 472 | Chitobiosyldiphosphodolichol beta-mannosyltransferase OS=Debaryomyces hansenii (strain ATCC 36239 / CBS 767 / BCRC 21394 / JCM 1990 / NBRC 0083 / IGC 2968) OX=284592 GN=ALG1 PE=3 SV=2 |
|
8.01e-204 | 5 | 468 | 3 | 453 | Chitobiosyldiphosphodolichol beta-mannosyltransferase OS=Candida albicans (strain SC5314 / ATCC MYA-2876) OX=237561 GN=ALG1 PE=3 SV=1 |
|
1.94e-119 | 21 | 466 | 7 | 446 | Chitobiosyldiphosphodolichol beta-mannosyltransferase OS=Candida glabrata (strain ATCC 2001 / CBS 138 / JCM 3761 / NBRC 0622 / NRRL Y-65) OX=284593 GN=ALG1 PE=3 SV=1 |
|
4.53e-117 | 11 | 466 | 5 | 442 | Chitobiosyldiphosphodolichol beta-mannosyltransferase OS=Kluyveromyces lactis (strain ATCC 8585 / CBS 2359 / DSM 70799 / NBRC 1267 / NRRL Y-1140 / WM37) OX=284590 GN=ALG1 PE=3 SV=1 |
|
1.54e-115 | 22 | 459 | 8 | 438 | Chitobiosyldiphosphodolichol beta-mannosyltransferase OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=ALG1 PE=1 SV=1 |
Other | SP_Sec_SPI | CS Position |
---|---|---|
1.000037 | 0.000006 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.