logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: KSA01513.1

You are here: Home > Sequence: KSA01513.1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Debaryomyces fabryi
Lineage Ascomycota; Saccharomycetes; ; Debaryomycetaceae; Debaryomyces; Debaryomyces fabryi
CAZyme ID KSA01513.1
CAZy Family GH76
CAZyme Description Alpha-1,3/1,6-mannosyltransferase ALG2
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
476 54323.19 6.5020
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_DfabryiCBS789 6025 N/A 0 6025
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.257:6 2.4.1.132:6

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 221 391 5.7e-28 0.825

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
340834 GT4_ALG2-like 0.0 10 434 1 392
alpha-1,3/1,6-mannosyltransferase ALG2 and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. ALG2, a 1,3-mannosyltransferase, in yeast catalyzes the mannosylation of Man(2)GlcNAc(2)-dolichol diphosphate and Man(1)GlcNAc(2)-dolichol diphosphate to form Man(3)GlcNAc(2)-dolichol diphosphate. A deficiency of this enzyme causes an abnormal accumulation of Man1GlcNAc2-PP-dolichol and Man2GlcNAc2-PP-dolichol, which is associated with a type of congenital disorders of glycosylation (CDG), designated CDG-Ii, in humans.
340831 GT4_PimA-like 5.88e-27 11 436 1 363
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
340839 GT4_GT28_WabH-like 7.45e-24 11 373 1 303
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.
395425 Glycos_transf_1 3.62e-21 226 420 3 158
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.
223515 RfaB 2.27e-20 8 436 1 372
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
0.0 1 476 1 476
4.46e-207 9 466 2 449
7.83e-202 8 460 8 458
7.83e-202 8 460 8 458
1.37e-192 8 473 2 459

PDB Hits      help

KSA01513.1 has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
0.0 1 476 1 476
Alpha-1,3/1,6-mannosyltransferase ALG2 OS=Debaryomyces hansenii (strain ATCC 36239 / CBS 767 / BCRC 21394 / JCM 1990 / NBRC 0083 / IGC 2968) OX=284592 GN=ALG2 PE=3 SV=2
2.82e-180 9 433 7 437
Alpha-1,3/1,6-mannosyltransferase ALG2 OS=Candida albicans (strain SC5314 / ATCC MYA-2876) OX=237561 GN=ALG2 PE=3 SV=2
6.43e-135 8 438 5 430
Alpha-1,3/1,6-mannosyltransferase ALG2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=ALG2 PE=1 SV=2
5.05e-131 11 454 8 445
Alpha-1,3/1,6-mannosyltransferase ALG2 OS=Candida glabrata (strain ATCC 2001 / CBS 138 / JCM 3761 / NBRC 0622 / NRRL Y-65) OX=284593 GN=ALG2 PE=3 SV=1
8.98e-124 8 434 7 428
Alpha-1,3/1,6-mannosyltransferase ALG2 OS=Kluyveromyces lactis (strain ATCC 8585 / CBS 2359 / DSM 70799 / NBRC 1267 / NRRL Y-1140 / WM37) OX=284590 GN=ALG2 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000042 0.000001

TMHMM  Annotations      help

There is no transmembrane helices in KSA01513.1.