logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: KFA55928.1

You are here: Home > Sequence: KFA55928.1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Stachybotrys chartarum
Lineage Ascomycota; Sordariomycetes; ; Stachybotryaceae; Stachybotrys; Stachybotrys chartarum
CAZyme ID KFA55928.1
CAZy Family GT25
CAZyme Description unspecified product
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
559 62959.65 5.6720
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_SchartarumIBT40293 11453 1280524 0 11453
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.26:1

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 11 335 6.8e-67 0.9522184300341296

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
350133 GH32_XdINV-like 9.41e-122 17 335 1 333
glycoside hydrolase family 32 protein such as Xanthophyllomyces dendrorhous beta-fructofuranosidase (Inv;Xd-INV;XdINV). This subfamily of glycosyl hydrolase family GH32 includes fructan:fructan 1-fructosyltransferase (FT, EC 2.4.1.100) and beta-fructofuranosidase (invertase or Inv, EC 3.2.1.26), among others. These enzymes cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. Xanthophyllomyces dendrorhous beta-fructofuranosidase (XdINV) also catalyzes the synthesis of fructooligosaccharides (FOS, a beneficial prebiotic), producing neo-FOS, making it an interesting biotechnology target. Structural studies show plasticity of its active site, having a flexible loop that is essential in binding sucrose and beta(2-1)-linked oligosaccharide, making it a valuable biocatalyst to produce novel bioconjugates. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
214757 Glyco_32 1.13e-69 11 483 1 436
Glycosyl hydrolases family 32.
350110 GH32_FFase 2.15e-63 18 335 2 279
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
224536 SacC 1.16e-54 6 511 28 485
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].
395193 Glyco_hydro_32N 1.09e-43 11 335 1 295
Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
1.26e-251 1 529 1 531
3.01e-245 1 530 37 573
1.93e-240 1 528 24 550
2.39e-236 1 528 1 533
2.68e-223 1 532 13 555

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
8.28e-48 3 528 23 603
Aspergillus kawachii beta-fructofuranosidase complexed with glycerol [Aspergillus luchuensis IFO 4308],5XH9_A Aspergillus kawachii beta-fructofuranosidase [Aspergillus luchuensis IFO 4308],5XHA_A Aspergillus kawachii beta-fructofuranosidase complexed with fructose [Aspergillus luchuensis IFO 4308]
1.73e-44 6 528 65 641
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5ANN_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
1.73e-44 6 528 65 641
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S82_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
2.05e-43 6 528 63 639
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FK7_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5FK8_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FK8_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5FKB_A Chain A, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FKB_B Chain B, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FKC_A Chain A, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FKC_B Chain B, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FMC_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FMC_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
2.09e-43 6 528 65 641
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FIX_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5FMB_A Chain A, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FMB_B Chain B, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FMD_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FMD_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2.92e-26 6 493 24 450
Sucrose-6-phosphate hydrolase OS=Escherichia coli OX=562 GN=cscA PE=3 SV=1
2.54e-23 8 500 30 480
Sucrose-6-phosphate hydrolase OS=Zymomonas mobilis subsp. mobilis (strain ATCC 31821 / ZM4 / CP4) OX=264203 GN=sacA PE=1 SV=1
3.40e-23 8 500 30 480
Sucrose-6-phosphate hydrolase OS=Zymomonas mobilis subsp. mobilis (strain ATCC 10988 / DSM 424 / LMG 404 / NCIMB 8938 / NRRL B-806 / ZM1) OX=555217 GN=sacA PE=3 SV=1
6.22e-23 7 494 125 625
Beta-fructofuranosidase 1 OS=Zea mays OX=4577 GN=IVR1 PE=3 SV=1
1.57e-22 4 436 47 423
Beta-fructofuranosidase, insoluble isoenzyme CWINV4 OS=Arabidopsis thaliana OX=3702 GN=CWINV4 PE=2 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
0.994432 0.005597

TMHMM  Annotations      help

There is no transmembrane helices in KFA55928.1.