logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: KAF6515440.1

You are here: Home > Sequence: KAF6515440.1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Fusarium oxysporum
Lineage Ascomycota; Sordariomycetes; ; Nectriaceae; Fusarium; Fusarium oxysporum
CAZyme ID KAF6515440.1
CAZy Family AA9
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
674 73396.12 6.2598
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_FoxysporumFo5176 17912 660025 0 17912
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.26:1 3.2.1.26:1

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 220 510 4.8e-79 0.9761092150170648
CBM38 34 162 9.5e-38 0.9844961240310077

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
224536 SacC 3.09e-108 208 671 21 486
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].
214757 Glyco_32 1.18e-103 220 633 1 437
Glycosyl hydrolases family 32.
273554 scrB_fam 1.31e-93 211 642 9 444
sucrose-6-phosphate hydrolase. [Energy metabolism, Biosynthesis and degradation of polysaccharides]
350110 GH32_FFase 6.98e-85 226 506 1 281
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
350137 GH32_BfrA-like 1.38e-84 226 506 1 286
glycoside hydrolase family 32 protein such as Thermotoga maritima invertase (BfrA or Tm1414). This subfamily of glycosyl hydrolase family GH32 includes beta-fructosidase (invertase, EC 3.2.1.26) that cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase. These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
0.0 1 674 1 674
0.0 1 674 1 674
0.0 1 674 1 674
0.0 5 674 14 685
7.21e-260 6 673 14 694

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2.33e-60 192 664 5 480
Chain A, Sucrose-6-phosphate hydrolase [Frischella perrara],7VCP_A Chain A, Sucrose-6-phosphate hydrolase [Frischella perrara]
5.17e-53 215 643 2 407
The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_B The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_C The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_D The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_E The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_F The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8]
1.37e-52 215 643 2 407
beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_B beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_C beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_D beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_E beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_F beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8]
1.07e-45 216 506 49 340
Bombyx mori GH32 beta-fructofuranosidase BmSUC1 [Bombyx mori]
1.34e-44 216 506 49 340
Bombyx mori GH32 beta-fructofuranosidase BmSUC1 mutant D63A in complex with sucrose [Bombyx mori]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6.44e-62 217 670 26 477
Sucrose-6-phosphate hydrolase OS=Escherichia coli OX=562 GN=cscA PE=3 SV=1
1.87e-57 217 642 30 473
Sucrose-6-phosphate hydrolase OS=Zymomonas mobilis subsp. mobilis (strain ATCC 10988 / DSM 424 / LMG 404 / NCIMB 8938 / NRRL B-806 / ZM1) OX=555217 GN=sacA PE=3 SV=1
4.96e-57 217 642 30 473
Sucrose-6-phosphate hydrolase OS=Zymomonas mobilis subsp. mobilis (strain ATCC 31821 / ZM4 / CP4) OX=264203 GN=sacA PE=1 SV=1
1.98e-53 215 643 2 407
Beta-fructosidase OS=Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) OX=243274 GN=bfrA PE=1 SV=1
2.01e-53 217 657 25 463
Raffinose invertase OS=Escherichia coli OX=562 GN=rafD PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI CS Position
0.001410 0.998543 CS pos: 16-17. Pr: 0.9617

TMHMM  Annotations      help

There is no transmembrane helices in KAF6515440.1.