logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: KAF6515282.1

You are here: Home > Sequence: KAF6515282.1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Fusarium oxysporum
Lineage Ascomycota; Sordariomycetes; ; Nectriaceae; Fusarium; Fusarium oxysporum
CAZyme ID KAF6515282.1
CAZy Family AA9
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
811 90248.78 6.6729
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_FoxysporumFo5176 17912 660025 0 17912
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.231:3

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 551 719 2.3e-33 0.94375

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
340823 GT4_trehalose_phosphorylase 1.11e-178 327 746 1 378
trehalose phosphorylase and similar proteins. Trehalose phosphorylase (TP) reversibly catalyzes trehalose synthesis and degradation from alpha-glucose-1-phosphate (alpha-Glc-1-P) and glucose. The catalyzing activity includes the phosphorolysis of trehalose, which produce alpha-Glc-1-P and glucose, and the subsequent synthesis of trehalose. This family is most closely related to the GT4 family of glycosyltransferases.
395425 Glycos_transf_1 5.73e-23 552 723 2 156
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.
223515 RfaB 8.79e-22 326 723 3 354
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
340831 GT4_PimA-like 4.33e-21 550 723 190 345
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
340830 GT4_sucrose_synthase 1.23e-17 543 726 210 383
sucrose-phosphate synthase and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. The sucrose-phosphate synthases in this family may be unique to plants and photosynthetic bacteria. This enzyme catalyzes the synthesis of sucrose 6-phosphate from fructose 6-phosphate and uridine 5'-diphosphate-glucose, a key regulatory step of sucrose metabolism. The activity of this enzyme is regulated by phosphorylation and moderated by the concentration of various metabolites and light.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
0.0 94 793 116 818
0.0 104 793 1 690
0.0 94 793 119 846
0.0 94 793 119 846
0.0 109 793 5 689

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1.40e-40 299 726 16 394
Crystal structure of trehalose synthase TreT from P.horikoshi [Pyrococcus horikoshii],2X6Q_B Crystal structure of trehalose synthase TreT from P.horikoshi [Pyrococcus horikoshii],2X6R_A Crystal structure of trehalose synthase TreT from P.horikoshi produced by soaking in trehalose [Pyrococcus horikoshii],2X6R_B Crystal structure of trehalose synthase TreT from P.horikoshi produced by soaking in trehalose [Pyrococcus horikoshii]
8.79e-40 299 726 16 394
Crystal structure of trehalose synthase TreT mutant E326A from P. horikoshii in complex with UDPG [Pyrococcus horikoshii],2XA2_B Crystal structure of trehalose synthase TreT mutant E326A from P. horikoshii in complex with UDPG [Pyrococcus horikoshii],2XA9_A Crystal structure of trehalose synthase TreT mutant E326A from P. horikoshii in complex with UDPG [Pyrococcus horikoshii],2XA9_B Crystal structure of trehalose synthase TreT mutant E326A from P. horikoshii in complex with UDPG [Pyrococcus horikoshii],2XMP_A Crystal structure of trehalose synthase TreT mutant E326A from P. horishiki in complex with UDP [Pyrococcus horikoshii],2XMP_B Crystal structure of trehalose synthase TreT mutant E326A from P. horishiki in complex with UDP [Pyrococcus horikoshii]
4.04e-39 299 693 16 363
Crystal structure of trehalose synthase TreT from P.horikoshii (Seleno derivative) [Pyrococcus horikoshii],2XA1_B Crystal structure of trehalose synthase TreT from P.horikoshii (Seleno derivative) [Pyrococcus horikoshii]
5.52e-34 317 726 20 375
Chain AAA, Trehalose phosphorylase/synthase [Thermoproteus uzoniensis],6ZJ7_AAA Chain AAA, Trehalose phosphorylase/synthase [Thermoproteus uzoniensis 768-20],6ZJH_AAA Chain AAA, Trehalose phosphorylase/synthase [Thermoproteus uzoniensis 768-20],6ZMZ_AAA Chain AAA, Trehalose phosphorylase/synthase [Thermoproteus uzoniensis],6ZN1_AAA Chain AAA, Trehalose phosphorylase/synthase [Thermoproteus uzoniensis]
4.20e-09 551 729 210 368
Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_B Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_C Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_D Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_E Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_F Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_G Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_H Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_I Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_J Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_K Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_L Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5.26e-225 113 787 9 725
Trehalose phosphorylase OS=Grifola frondosa OX=5627 PE=1 SV=1
6.06e-223 137 787 39 732
Trehalose phosphorylase OS=Pleurotus pulmonarius OX=28995 GN=TP PE=2 SV=1
6.16e-215 137 787 39 744
Trehalose phosphorylase OS=Pleurotus sajor-caju OX=50053 GN=TP PE=1 SV=1
3.83e-40 299 726 15 393
Trehalose synthase OS=Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3) OX=70601 GN=treT PE=1 SV=2
4.90e-40 299 728 14 394
Trehalose synthase OS=Thermococcus litoralis (strain ATCC 51850 / DSM 5473 / JCM 8560 / NS-C) OX=523849 GN=treT PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000062 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in KAF6515282.1.