logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: KAF5664644.1

You are here: Home > Sequence: KAF5664644.1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Fusarium circinatum
Lineage Ascomycota; Sordariomycetes; ; Nectriaceae; Fusarium; Fusarium circinatum
CAZyme ID KAF5664644.1
CAZy Family CBM63
CAZyme Description levanase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
535 58956.74 4.4087
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_FcircinatumNRRL25331 13905 N/A 0 13905
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in KAF5664644.1.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 41 355 1.1e-71 0.9761092150170648

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
350134 GH32_Inu-like 1.93e-127 48 350 3 289
glycoside hydrolase family 32 protein such as Aspergillus ficuum endo-inulinase (Inu2). This subfamily of glycosyl hydrolase family GH32 includes endo-inulinase (inu2, EC 3.2.1.7), exo-inulinase (Inu1, EC 3.2.1.80), invertase (EC 3.2.1.26), and levan fructotransferase (LftA, EC 4.2.2.16), among others. These enzymes cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
224536 SacC 1.69e-101 32 523 24 477
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].
214757 Glyco_32 2.50e-99 41 495 1 437
Glycosyl hydrolases family 32.
395193 Glyco_hydro_32N 3.53e-83 41 355 1 302
Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure.
350110 GH32_FFase 2.71e-56 48 350 2 281
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
0.0 1 535 1 535
0.0 20 535 19 534
0.0 20 535 19 534
0.0 1 534 1 534
0.0 1 534 1 534

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2.98e-79 40 519 4 466
Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens [Paenarthrobacter ureafaciens],4FFF_B Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens [Paenarthrobacter ureafaciens],4FFF_C Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens [Paenarthrobacter ureafaciens],4FFF_D Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens [Paenarthrobacter ureafaciens]
3.14e-79 40 519 4 466
Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens in complex with DFA-IV [Paenarthrobacter ureafaciens],4FFG_B Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens in complex with DFA-IV [Paenarthrobacter ureafaciens],4FFG_C Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens in complex with DFA-IV [Paenarthrobacter ureafaciens],4FFG_D Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens in complex with DFA-IV [Paenarthrobacter ureafaciens]
1.71e-78 40 519 4 466
Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with sucrose [Paenarthrobacter ureafaciens],4FFH_B Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with sucrose [Paenarthrobacter ureafaciens],4FFH_C Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with sucrose [Paenarthrobacter ureafaciens],4FFH_D Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with sucrose [Paenarthrobacter ureafaciens],4FFI_A Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with levanbiose [Paenarthrobacter ureafaciens],4FFI_B Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with levanbiose [Paenarthrobacter ureafaciens],4FFI_C Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with levanbiose [Paenarthrobacter ureafaciens],4FFI_D Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with levanbiose [Paenarthrobacter ureafaciens]
6.53e-65 37 520 8 502
Crystal structure of exo-inulinase from Aspergillus awamori in spacegroup P21 [Aspergillus awamori],1Y9G_A Crystal structure of exo-inulinase from Aspergillus awamori complexed with fructose [Aspergillus awamori],1Y9M_A Crystal structure of exo-inulinase from Aspergillus awamori in spacegroup P212121 [Aspergillus awamori]
2.78e-54 33 525 25 507
First crystal structure of an endo-inulinase, from Aspergillus ficuum: structural analysis and comparison with other GH32 enzymes. [Aspergillus ficuum],3SC7_X First crystal structure of an endo-inulinase, from Aspergillus ficuum: structural analysis and comparison with other GH32 enzymes. [Aspergillus ficuum]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7.00e-107 37 534 44 514
Levanbiose-producing levanase OS=Bacillus subtilis (strain 168) OX=224308 GN=levB PE=1 SV=1
4.01e-94 51 397 1 332
Levanbiose-producing levanase (Fragment) OS=Geobacillus stearothermophilus OX=1422 GN=levB PE=1 SV=2
6.36e-84 37 527 35 505
Levanase OS=Bacillus subtilis (strain 168) OX=224308 GN=sacC PE=1 SV=1
1.76e-66 37 520 27 521
Extracellular exo-inulinase inuE OS=Aspergillus niger (strain CBS 513.88 / FGSC A1513) OX=425011 GN=inuE PE=2 SV=1
3.44e-66 37 520 27 521
Extracellular exo-inulinase inuE OS=Aspergillus niger OX=5061 GN=inuE PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI CS Position
0.000626 0.999352 CS pos: 28-29. Pr: 0.9331

TMHMM  Annotations      download full data without filtering help

Start End
12 34