logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: K441DRAFT_653041-t45_1-p1

You are here: Home > Sequence: K441DRAFT_653041-t45_1-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Cenococcum geophilum
Lineage Ascomycota; Dothideomycetes; ; Gloniaceae; Cenococcum; Cenococcum geophilum
CAZyme ID K441DRAFT_653041-t45_1-p1
CAZy Family GH17
CAZyme Description glycoside hydrolase family 32 protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
625 KV748179|CGC1 68115.51 5.1108
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_Cgeophilum1.58 14745 794803 38 14707
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.26:1

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 45 392 2.7e-68 0.962457337883959

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
350133 GH32_XdINV-like 1.53e-162 51 392 1 336
glycoside hydrolase family 32 protein such as Xanthophyllomyces dendrorhous beta-fructofuranosidase (Inv;Xd-INV;XdINV). This subfamily of glycosyl hydrolase family GH32 includes fructan:fructan 1-fructosyltransferase (FT, EC 2.4.1.100) and beta-fructofuranosidase (invertase or Inv, EC 3.2.1.26), among others. These enzymes cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. Xanthophyllomyces dendrorhous beta-fructofuranosidase (XdINV) also catalyzes the synthesis of fructooligosaccharides (FOS, a beneficial prebiotic), producing neo-FOS, making it an interesting biotechnology target. Structural studies show plasticity of its active site, having a flexible loop that is essential in binding sucrose and beta(2-1)-linked oligosaccharide, making it a valuable biocatalyst to produce novel bioconjugates. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
214757 Glyco_32 9.89e-68 45 554 1 436
Glycosyl hydrolases family 32.
350110 GH32_FFase 3.65e-62 51 391 1 281
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
395193 Glyco_hydro_32N 1.35e-48 45 389 1 295
Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure.
224536 SacC 1.08e-47 40 569 28 464
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
1.06e-292 1 624 1 644
4.53e-288 1 625 30 669
6.41e-282 16 625 19 635
1.29e-281 16 625 19 635
4.86e-281 31 625 1 604

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6.35e-94 21 611 46 652
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S82_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
6.35e-94 21 611 46 652
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5ANN_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
8.99e-93 21 611 44 650
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FK7_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5FK8_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FK8_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5FKB_A Chain A, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FKB_B Chain B, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FKC_A Chain A, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FKC_B Chain B, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FMC_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FMC_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
9.43e-93 21 611 46 652
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FIX_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5FMB_A Chain A, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FMB_B Chain B, BETA-FRUCTOFURANOSIDASE [Phaffia rhodozyma],5FMD_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5FMD_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]
9.43e-93 21 611 46 652
Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5NSL_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],5O47_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5O47_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6FJE_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6FJE_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6FJG_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6FJG_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6S2G_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S2G_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6S2H_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S2H_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma],6S3Z_A Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S3Z_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1.19e-27 40 565 26 507
Extracellular exo-inulinase inuE OS=Aspergillus awamori OX=105351 GN=inuE PE=1 SV=1
2.87e-27 40 566 26 508
Extracellular exo-inulinase inuE OS=Aspergillus ficuum OX=5058 GN=exoI PE=1 SV=1
2.87e-27 40 566 26 508
Extracellular exo-inulinase inuE OS=Aspergillus niger OX=5061 GN=inuE PE=1 SV=1
2.22e-26 40 566 26 508
Extracellular exo-inulinase inuE OS=Aspergillus niger (strain CBS 513.88 / FGSC A1513) OX=425011 GN=inuE PE=2 SV=1
1.59e-25 16 396 70 420
Acid beta-fructofuranosidase OS=Solanum lycopersicum OX=4081 GN=TIV1 PE=2 SV=1

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI CS Position
0.000229 0.999740 CS pos: 20-21. Pr: 0.9772

TMHMM  Annotations      help

There is no transmembrane helices in K441DRAFT_653041-t45_1-p1.