logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: H257_13937-t26_1-p1

You are here: Home > Sequence: H257_13937-t26_1-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Aphanomyces astaci
Lineage Oomycota; NA; ; Saprolegniaceae; Aphanomyces; Aphanomyces astaci
CAZyme ID H257_13937-t26_1-p1
CAZy Family GT8
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
2418 267366.04 6.8374
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_AastaciAPO3 19584 N/A 465 19119
Gene Location Start: 195777; End:203033  Strand: +

Full Sequence      Download help

MSFEGLSIAV  TGGAGFIGSS  LVTQLLALHA  THVMIIDCLT  PDYDVAIKRA  RIEYALTDER60
CSFEQVNICD  RARLLDVFRT  HQPVVVYHLA  AQAGVRRCEL  SPALTCATNV  EGTASVLHTC120
SATPSVKYVV  FASSSSVYGN  QPTPWNELTT  PMDPQSLYAR  TKVMGEQLCQ  QFGAKHEGNK180
SVCILRPFSV  YGPQGRPDMA  IAKFVRALRH  RQPITLIGNT  QRDCTFIDDV  VQAFVLSALV240
QRPHQERYKQ  QHQLVSATGE  SNINQTPLTR  TFNVGTGHTT  SMEDVLQQIQ  RAMRQVPVEV300
LHAPANPVDA  IVTRADSVAA  SNELGFRASV  HLSEGIVKTV  ASELHDPPMH  IAVVVATTDG360
GRFDLLTKRC  LPSIWNQTRP  PDSIVIVADT  SCEDGFTNDL  HAFLRNSPGN  VMLLFNHRTL420
GASGAWNTGI  LHVLSAIPPG  GDMSRMYIAI  CDDDDMWSCD  HLALMDRHRS  DVVVGGLIRY480
ESDEGEGKPL  SIPRLPLSSN  AFLSGNPHLQ  GSNLYVRLLV  LLQAGLFDEG  LNACTDRDLM540
VRVLDLPGVS  VECVANGAHS  VHHFADASRV  RLTTCGHRKQ  LALTVFWRKH  AHRMTKTVQG600
DFMCRAVMLF  GWSPPSPQVT  PNESTTTSVP  TPLISPSCDG  RLSQKYALIV  GITSDSGSSA660
VRGLLEDLVA  LSCASLVSTD  VVILENGPKA  STLQATITTF  QESHVLRCLF  VPLDQQRQDM720
VSGLLPPNQT  FDVRASIAET  RTRVQLYTSI  FAHQLAPQLG  SADCIVKPVV  WILDDDKRLP780
PTFPLQAVLQ  AHESDPTIAV  VLGVDAQCPP  LPPAFCVRTQ  LVDMLSHLQL  CLHTPPSDPL840
GPPQPPGATS  LSEKVQGDYY  HDLAGYKTLE  TPMWMNTMST  SLAHFTTLGE  CMNQILKGSL900
VTRPLASDDD  VPPTPTLTLT  PSIHRGGCTF  VFDLECMLDA  NTAPPCHRRS  DMVWSLLQRD960
VHHKRVVQCR  QVCVNHIRQS  MPSKTDLIDV  AMKDVAGHAL  YQALQTVLGD  PDMTETPSWV1020
ELWPRFWEQY  CVTYNRRRTE  LRASVERIRG  LVYTIKSLLR  CQSAWWNSSN  NSSDNDVIEG1080
AKATLWTALE  SLTHRFDSAW  EEPLSVDVTN  DNTMRELHMW  FTAVLPRHRH  DDWTRAQLTL1140
FHNSVYEPHR  IESARACVSI  LYQVPPESLE  LLGVGYEGVT  FHNGKSMDGQ  RGCCCFKYMD1200
LAALRFPNHV  WDSLVALLTE  PTKSMLGLRC  VRRRGYHVCL  ERDYVDGTEL  NLNSKRECAP1260
EAPLSFLAWC  RKANITCRNV  KPQNLVVSRE  TGQLTLVDIG  MDTVVPWTSE  GEGHMMRKMY1320
LSWAWLHRHD  LAALLSASHH  SPKMPELQAG  FNRFQLAYNH  MLTPQACVDD  AVALVAQLVP1380
PGGGSLLNVT  IDWTLHARVQ  AILPHAQGAK  LVVHPLVQVG  KTELTLHNPF  DTITCICVVC1440
AVDDLTMHRV  LLELRAKVAP  HGVVVLAMCN  PFFVAANPSP  HGLSDRFHRC  FGRRNDDVVM1500
PRPWHVFEHA  FWRAGLMVVD  MAHTKSADVV  AFEPVSDYIV  VQLKPVTTLC  LSPSVMPAAV1560
GGRPSHRGET  TLMASCTLLI  KTCATEHLTL  AARVRHLKEQ  LEGPRAFAET  LVIVDGYRRD1620
NDKSSFGKPE  FFEPENELDE  EYNDDLDSFV  DSTPRPSLDT  PLHRDTDKFD  LCDGDAVTDE1680
LSKCLAVCQE  LQQEGWIDRY  LHYQPTSAEV  VALNSKWFGL  HHNNQTHTRT  RRGTLVQVAS1740
TLAGLEAATS  EFILQVDSDL  MVGRHSYYHL  DDYLGQAMAI  FAQDELAISV  ALDTFRSQPQ1800
GGGRQLPGGP  TWCDPDTGTP  HRVEVRGCVF  SKARLMSKLP  MPRPLGPTLA  YLKSTTVTQY1860
HSVCKVDPQH  WLLPWYRAMD  IAMQDINWGR  SYRVHDGTTF  FVHPTDTTKA  STDNYGLVLD1920
CVATLRLPSA  LQHGHVDCQG  GVQDWMNALS  KRHEDVVVVV  LGRNVSPSKI  MRCLDSIARQ1980
HKCPQWTVGV  IVVDDASSSH  TTAAFLRWYC  HPQKNNARPP  VTLIQPRFEP  RKVGANTVLA2040
VEYVCANPMS  VVVTLDMDDS  LLGMDVWTTL  YRYYIQEYAD  ATVGGMLRTD  KIQPPTSYPG2100
ICVNGARRLR  GGGNVWMHLR  SFRKYLFDRI  LDQDLREHAI  LDATTLTRGD  NGGNPYLTFG2160
FDWAMMLPLV  EMATKPTVVH  EVLYLYEPFG  PHKAETDAVA  FRLLARPAYS  KLRPLIAVVG2220
DANLNARHAV  VDCAFPGPRA  SSEATGAAEK  EAVLMALGQA  LVDAGYTVLC  GGLGGAMLAV2280
ARGAHASTEW  QEGRVVGLVP  GTDRRQANSF  IDMPIATGLG  IARNCLVAQA  DAMVCVGGGS2340
GTLSEMALAW  SAGRLVIGME  SASGVTPQFV  GKPLDGRRRY  PAEVVPHDQV  YRAKDVDQVI2400
QLLRAYLPLY  AKKRQLPM2418

Enzyme Prediction      help

EC - -

CDD Domains      download full data without filtering help

Created with Snap120241362483604725846967108812091329145015711692181319342055217622978341UDP_GE_SDE_e8340UDP_AE_SDR_e8345WcaG8248Epimerase8238SDR_e
Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
187563 UDP_GE_SDE_e 3.27e-60 8 341 3 327
UDP glucuronic acid epimerase, extended (e) SDRs. This subgroup contains UDP-D-glucuronic acid 4-epimerase, an extended SDR, which catalyzes the conversion of UDP-alpha-D-glucuronic acid to UDP-alpha-D-galacturonic acid. This group has the SDR's canonical catalytic tetrad and the TGxxGxxG NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.
187566 UDP_AE_SDR_e 3.71e-53 8 340 2 301
UDP-N-acetylglucosamine 4-epimerase, extended (e) SDRs. This subgroup contains UDP-N-acetylglucosamine 4-epimerase of Pseudomonas aeruginosa, WbpP, an extended SDR, that catalyzes the NAD+ dependent conversion of UDP-GlcNAc and UDPGalNA to UDP-Glc and UDP-Gal. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.
223528 WcaG 5.84e-52 8 345 3 310
Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis].
396097 Epimerase 1.98e-48 8 248 1 235
NAD dependent epimerase/dehydratase family. This family of proteins utilize NAD as a cofactor. The proteins in this family use nucleotide-sugar substrates for a variety of chemical reactions.
212494 SDR_e 1.31e-43 8 238 1 187
extended (e) SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.

CAZyme Hits      help

Created with Snap120241362483604725846967108812091329145015711692181319342055217622973222208AKU11317.1|GT23502196AGB01185.1|GT23532412VEJ15080.1|GT23471083ACY13523.1|GT23511008BBM87114.1|GT2
Hit ID E-Value Query Start Query End Hit Start Hit End
AKU11317.1|GT2 2.64e-170 322 2208 3 1722
AGB01185.1|GT2 8.31e-131 350 2196 3 1703
VEJ15080.1|GT2 3.83e-103 353 2412 6 1782
ACY13523.1|GT2 3.13e-75 347 1083 25 764
BBM87114.1|GT2 1.44e-67 351 1008 8 634

PDB Hits      download full data without filtering help

Created with Snap12024136248360472584696710881209132914501571169218131934205521762297103365U4Q_A83366KV9_A103506LTT_A63366ZL6_A63366ZLJ_A
Hit ID E-Value Query Start Query End Hit Start Hit End Description
5U4Q_A 4.43e-32 10 336 8 324
Chain A, dTDP-glucose 4,6-dehydratase [Klebsiella pneumoniae],5U4Q_B Chain B, dTDP-glucose 4,6-dehydratase [Klebsiella pneumoniae]
6KV9_A 2.06e-24 8 336 21 315
MoeE5 in complex with UDP-glucuronic acid and NAD [Streptomyces viridosporus ATCC 14672],6KVC_A MoeE5 in complex with UDP-glucose and NAD [Streptomyces viridosporus ATCC 14672]
6LTT_A 2.31e-24 10 350 5 315
Chain A, UDP-glucose 4-epimerase [Mycobacterium tuberculosis H37Rv],6LTT_B Chain B, UDP-glucose 4-epimerase [Mycobacterium tuberculosis H37Rv]
6ZL6_A 2.16e-23 6 336 1 303
Crystal Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with UDP and NAD [Bacillus cereus HuA2-4],6ZL6_B Crystal Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with UDP and NAD [Bacillus cereus HuA2-4],6ZLA_A Crystal Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with NAD [Bacillus cereus],6ZLA_B Crystal Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with NAD [Bacillus cereus],6ZLA_C Crystal Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with NAD [Bacillus cereus],6ZLA_D Crystal Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with NAD [Bacillus cereus],6ZLD_A Crystal Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with UDP-Glucuronic acid and NAD [Bacillus cereus HuA2-4],6ZLD_B Crystal Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with UDP-Glucuronic acid and NAD [Bacillus cereus HuA2-4],6ZLK_A Equilibrium Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with UDP-Glucuronic acid/UDP-Galacturonic acid and NAD [Bacillus cereus HuA2-4],6ZLK_B Equilibrium Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with UDP-Glucuronic acid/UDP-Galacturonic acid and NAD [Bacillus cereus HuA2-4],6ZLK_C Equilibrium Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with UDP-Glucuronic acid/UDP-Galacturonic acid and NAD [Bacillus cereus HuA2-4],6ZLK_D Equilibrium Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with UDP-Glucuronic acid/UDP-Galacturonic acid and NAD [Bacillus cereus HuA2-4],6ZLL_A Crystal Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with UDP-Galacturonic acid and NAD [Bacillus cereus HuA2-4],6ZLL_B Crystal Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with UDP-Galacturonic acid and NAD [Bacillus cereus HuA2-4],6ZLL_C Crystal Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with UDP-Galacturonic acid and NAD [Bacillus cereus HuA2-4],6ZLL_D Crystal Structure of UDP-Glucuronic acid 4-epimerase from Bacillus cereus in complex with UDP-Galacturonic acid and NAD [Bacillus cereus HuA2-4]
6ZLJ_A 7.17e-23 6 336 1 303
Crystal Structure of UDP-Glucuronic acid 4-epimerase Y149F mutant from Bacillus cereus in complex with UDP-4-DEOXY-4-FLUORO-Glucuronic acid and NAD [Bacillus cereus],6ZLJ_B Crystal Structure of UDP-Glucuronic acid 4-epimerase Y149F mutant from Bacillus cereus in complex with UDP-4-DEOXY-4-FLUORO-Glucuronic acid and NAD [Bacillus cereus]

Swiss-Prot Hits      download full data without filtering help

Created with Snap120241362483604725846967108812091329145015711692181319342055217622976243sp|P39858|CAPI_STAAU4338sp|O81312|GAE3_ARATH4340sp|O22141|GAE4_ARATH10336sp|Q04871|YCL2_ECO114340sp|Q9LPC1|GAE2_ARATH
Hit ID E-Value Query Start Query End Hit Start Hit End Description
sp|P39858|CAPI_STAAU 1.58e-31 6 243 1 234
Protein CapI OS=Staphylococcus aureus OX=1280 GN=capI PE=3 SV=1
sp|O81312|GAE3_ARATH 1.50e-29 4 338 89 413
UDP-glucuronate 4-epimerase 3 OS=Arabidopsis thaliana OX=3702 GN=GAE3 PE=2 SV=1
sp|O22141|GAE4_ARATH 3.05e-29 4 340 95 421
UDP-glucuronate 4-epimerase 4 OS=Arabidopsis thaliana OX=3702 GN=GAE4 PE=1 SV=1
sp|Q04871|YCL2_ECO11 3.67e-29 10 336 5 321
Uncharacterized 37.6 kDa protein in cld 5'region OS=Escherichia coli O111:H- OX=168927 PE=3 SV=1
sp|Q9LPC1|GAE2_ARATH 7.07e-29 4 340 90 416
UDP-glucuronate 4-epimerase 2 OS=Arabidopsis thaliana OX=3702 GN=GAE2 PE=2 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000028 0.000002

TMHMM  Annotations      help

There is no transmembrane helices in H257_13937-t26_1-p1.