logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: FOXG_21705-t26_1-p1

You are here: Home > Sequence: FOXG_21705-t26_1-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Fusarium oxysporum
Lineage Ascomycota; Sordariomycetes; ; Nectriaceae; Fusarium; Fusarium oxysporum
CAZyme ID FOXG_21705-t26_1-p1
CAZy Family GT4
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
175 19253.75 6.2803
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_Foxysporum4287 21354 426428 429 20925
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in FOXG_21705-t26_1-p1.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 17 169 1.8e-28 0.4402730375426621

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
350133 GH32_XdINV-like 5.54e-63 17 171 25 186
glycoside hydrolase family 32 protein such as Xanthophyllomyces dendrorhous beta-fructofuranosidase (Inv;Xd-INV;XdINV). This subfamily of glycosyl hydrolase family GH32 includes fructan:fructan 1-fructosyltransferase (FT, EC 2.4.1.100) and beta-fructofuranosidase (invertase or Inv, EC 3.2.1.26), among others. These enzymes cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. Xanthophyllomyces dendrorhous beta-fructofuranosidase (XdINV) also catalyzes the synthesis of fructooligosaccharides (FOS, a beneficial prebiotic), producing neo-FOS, making it an interesting biotechnology target. Structural studies show plasticity of its active site, having a flexible loop that is essential in binding sucrose and beta(2-1)-linked oligosaccharide, making it a valuable biocatalyst to produce novel bioconjugates. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
350110 GH32_FFase 3.98e-31 17 169 23 155
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
214757 Glyco_32 4.53e-25 17 168 29 165
Glycosyl hydrolases family 32.
395193 Glyco_hydro_32N 1.63e-22 17 136 29 136
Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure.
224536 SacC 1.94e-19 17 136 61 167
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
1.07e-109 8 170 2 167
2.77e-75 17 170 47 206
8.73e-72 17 170 41 206
1.59e-60 17 170 43 201
1.59e-60 17 170 43 201

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
8.73e-21 47 169 85 210
Aspergillus kawachii beta-fructofuranosidase complexed with glycerol [Aspergillus luchuensis IFO 4308],5XH9_A Aspergillus kawachii beta-fructofuranosidase [Aspergillus luchuensis IFO 4308],5XHA_A Aspergillus kawachii beta-fructofuranosidase complexed with fructose [Aspergillus luchuensis IFO 4308]
4.97e-15 47 169 86 231
Crystal structure of fructosyltransferase (wild-type) from A. japonicus [Aspergillus japonicus],3LFI_A Crystal structure of fructosyltransferase (wild-type) from A. japonicus in complex with glucose [Aspergillus japonicus],3LFI_B Crystal structure of fructosyltransferase (wild-type) from A. japonicus in complex with glucose [Aspergillus japonicus]
5.80e-14 47 169 86 231
Crystal Structure of A. japonicus CB05 [Aspergillus japonicus],3LDR_A Crystal structure of fructosyltransferase (D191A) from A. japonicus in complex with 1-Kestose [Aspergillus japonicus],3LEM_A Crystal structure of fructosyltransferase (D191A) from A. japonicus in complex with Nystose [Aspergillus japonicus],3LIG_A Crystal structure of fructosyltransferase (D191A) from A. japonicus [Aspergillus japonicus],3LIH_A Crystal structure of fructosyltransferase (D191A) from A. japonicus in complex with raffinose [Aspergillus japonicus]
1.41e-13 17 133 51 157
Crystal structure of a 6-SST/6-SFT from Pachysandra terminalis [Pachysandra terminalis],3UGF_B Crystal structure of a 6-SST/6-SFT from Pachysandra terminalis [Pachysandra terminalis],3UGG_A Crystal structure of a 6-SST/6-SFT from Pachysandra terminalis in complex with 1-kestose [Pachysandra terminalis],3UGG_B Crystal structure of a 6-SST/6-SFT from Pachysandra terminalis in complex with 1-kestose [Pachysandra terminalis],3UGH_A Crystal structure of a 6-SST/6-SFT from Pachysandra terminalis in complex with 6-kestose [Pachysandra terminalis],3UGH_B Crystal structure of a 6-SST/6-SFT from Pachysandra terminalis in complex with 6-kestose [Pachysandra terminalis]
2.12e-10 8 136 54 165
Chain A, Sucrose-6-phosphate hydrolase [Frischella perrara],7VCP_A Chain A, Sucrose-6-phosphate hydrolase [Frischella perrara]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4.06e-13 17 146 136 254
Acid beta-fructofuranosidase OS=Solanum lycopersicum OX=4081 GN=TIV1 PE=2 SV=1
1.03e-12 17 169 157 298
Beta-fructofuranosidase 1 OS=Zea mays OX=4577 GN=IVR1 PE=3 SV=1
1.39e-12 17 134 163 270
Beta-fructofuranosidase, soluble isoenzyme I OS=Daucus carota OX=4039 GN=INV*DC4 PE=1 SV=2
1.89e-12 17 146 138 255
Acid beta-fructofuranosidase 3, vacuolar OS=Arabidopsis thaliana OX=3702 GN=BFRUCT3 PE=2 SV=1
1.90e-12 17 146 153 270
Acid beta-fructofuranosidase 4, vacuolar OS=Arabidopsis thaliana OX=3702 GN=BFRUCT4 PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000046 0.000006

TMHMM  Annotations      help

There is no transmembrane helices in FOXG_21705-t26_1-p1.