logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: FOMG_10345-t38_1-p1

You are here: Home > Sequence: FOMG_10345-t38_1-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Fusarium oxysporum
Lineage Ascomycota; Sordariomycetes; ; Nectriaceae; Fusarium; Fusarium oxysporum
CAZyme ID FOMG_10345-t38_1-p1
CAZy Family GH28
CAZyme Description 1,4-alpha-glucan-branching enzyme
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
708 80522.78 6.1148
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_Foxysporum26406 20033 1089452 372 19661
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.18:166 2.4.1.18:50

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 250 543 1.3e-152 0.9965870307167235

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
215246 PLN02447 0.0 14 696 45 727
1,4-alpha-glucan-branching enzyme
200460 AmyAc_bac_euk_BE 0.0 183 587 2 406
Alpha amylase catalytic domain found in bacterial and eukaryotic branching enzymes. Branching enzymes (BEs) catalyze the formation of alpha-1,6 branch points in either glycogen or starch by cleavage of the alpha-1,4 glucosidic linkage yielding a non-reducing end oligosaccharide chain, and subsequent attachment to the alpha-1,6 position. By increasing the number of non-reducing ends, glycogen is more reactive to synthesis and digestion as well as being more soluble. This group includes bacterial and eukaryotic proteins. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
215519 PLN02960 0.0 133 696 332 888
alpha-amylase
178782 PLN03244 1.54e-169 133 696 337 863
alpha-amylase; Provisional
223373 GlgB 2.56e-134 74 699 24 628
1,4-alpha-glucan branching enzyme [Carbohydrate transport and metabolism].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
0.0 1 696 1 696
0.0 1 696 1 696
0.0 1 696 1 696
0.0 1 696 1 696
0.0 1 696 1 677

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2.08e-312 20 698 21 696
Crystal structure of human glycogen branching enzyme (GBE1) [Homo sapiens],4BZY_B Crystal structure of human glycogen branching enzyme (GBE1) [Homo sapiens],4BZY_C Crystal structure of human glycogen branching enzyme (GBE1) [Homo sapiens]
3.79e-309 38 698 6 664
Crystal structure of human glycogen branching enzyme (GBE1) in complex with acarbose [Homo sapiens],5CLT_B Crystal structure of human glycogen branching enzyme (GBE1) in complex with acarbose [Homo sapiens],5CLT_C Crystal structure of human glycogen branching enzyme (GBE1) in complex with acarbose [Homo sapiens],5CLW_A Crystal structure of human glycogen branching enzyme (GBE1) in complex with maltoheptaose [Homo sapiens],5CLW_B Crystal structure of human glycogen branching enzyme (GBE1) in complex with maltoheptaose [Homo sapiens],5CLW_C Crystal structure of human glycogen branching enzyme (GBE1) in complex with maltoheptaose [Homo sapiens]
4.14e-268 31 695 13 688
Structure of the Starch Branching Enzyme I (BEI) from Oryza sativa L [Oryza sativa Japonica Group]
1.18e-267 31 695 13 688
Structure of the Starch Branching Enzyme I (BEI) complexed with maltopentaose from Oryza sativa L [Oryza sativa Japonica Group],3VU2_B Structure of the Starch Branching Enzyme I (BEI) complexed with maltopentaose from Oryza sativa L [Oryza sativa Japonica Group]
1.61e-267 31 695 12 687
Chain A, Isoform 2 of 1,4-alpha-glucan-branching enzyme, chloroplastic/amyloplastic [Oryza sativa Japonica Group]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
0.0 30 696 15 679
1,4-alpha-glucan-branching enzyme OS=Rhizophagus irregularis (strain DAOM 181602 / DAOM 197198 / MUCL 43194) OX=747089 GN=GLC3 PE=2 SV=2
0.0 31 696 5 681
1,4-alpha-glucan-branching enzyme OS=Yarrowia lipolytica (strain CLIB 122 / E 150) OX=284591 GN=GLC3 PE=3 SV=1
0.0 24 696 6 701
1,4-alpha-glucan-branching enzyme OS=Candida glabrata (strain ATCC 2001 / CBS 138 / JCM 3761 / NBRC 0622 / NRRL Y-65) OX=284593 GN=GLC3 PE=3 SV=1
0.0 26 696 7 679
1,4-alpha-glucan-branching enzyme OS=Cryptococcus neoformans var. neoformans serotype D (strain JEC21 / ATCC MYA-565) OX=214684 GN=GLC3 PE=3 SV=1
0.0 20 696 6 682
1,4-alpha-glucan-branching enzyme OS=Aspergillus oryzae (strain ATCC 42149 / RIB 40) OX=510516 GN=gbeA PE=2 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000052 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in FOMG_10345-t38_1-p1.