Species | Fusarium oxysporum | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Ascomycota; Sordariomycetes; ; Nectriaceae; Fusarium; Fusarium oxysporum | |||||||||||
CAZyme ID | FOC1_g10000620-t38_1-p1 | |||||||||||
CAZy Family | AA2 | |||||||||||
CAZyme Description | Inulinase | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location |
EC | 3.2.1.7:10 |
---|
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH32 | 1 | 316 | 7.7e-72 | 0.9692832764505119 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
350134 | GH32_Inu-like | 2.37e-117 | 1 | 303 | 4 | 289 | glycoside hydrolase family 32 protein such as Aspergillus ficuum endo-inulinase (Inu2). This subfamily of glycosyl hydrolase family GH32 includes endo-inulinase (inu2, EC 3.2.1.7), exo-inulinase (Inu1, EC 3.2.1.80), invertase (EC 3.2.1.26), and levan fructotransferase (LftA, EC 4.2.2.16), among others. These enzymes cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. |
214757 | Glyco_32 | 3.45e-106 | 1 | 437 | 9 | 437 | Glycosyl hydrolases family 32. |
224536 | SacC | 1.42e-85 | 1 | 467 | 41 | 479 | Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism]. |
395193 | Glyco_hydro_32N | 5.59e-85 | 1 | 316 | 9 | 308 | Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure. |
350110 | GH32_FFase | 9.16e-70 | 1 | 303 | 3 | 281 | Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
0.0 | 1 | 474 | 49 | 522 | |
5.48e-282 | 1 | 474 | 49 | 522 | |
5.48e-282 | 1 | 474 | 49 | 522 | |
9.61e-279 | 1 | 474 | 33 | 506 | |
5.66e-252 | 1 | 473 | 361 | 833 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
1.34e-244 | 1 | 474 | 41 | 514 | First crystal structure of an endo-inulinase, from Aspergillus ficuum: structural analysis and comparison with other GH32 enzymes. [Aspergillus ficuum],3SC7_X First crystal structure of an endo-inulinase, from Aspergillus ficuum: structural analysis and comparison with other GH32 enzymes. [Aspergillus ficuum] |
|
3.75e-81 | 1 | 474 | 20 | 514 | Crystal structure of exo-inulinase from Aspergillus awamori in spacegroup P21 [Aspergillus awamori],1Y9G_A Crystal structure of exo-inulinase from Aspergillus awamori complexed with fructose [Aspergillus awamori],1Y9M_A Crystal structure of exo-inulinase from Aspergillus awamori in spacegroup P212121 [Aspergillus awamori] |
|
1.74e-50 | 1 | 449 | 22 | 479 | Chain A, Invertase [Schwanniomyces occidentalis],3KF3_B Chain B, Invertase [Schwanniomyces occidentalis] |
|
1.84e-50 | 1 | 449 | 25 | 482 | Chain A, Invertase [Schwanniomyces occidentalis],3KF5_B Chain B, Invertase [Schwanniomyces occidentalis] |
|
7.41e-50 | 1 | 449 | 48 | 505 | Chain A, Fructofuranosidase [Schwanniomyces occidentalis],3U14_B Chain B, Fructofuranosidase [Schwanniomyces occidentalis],6S1T_A Chain A, Fructofuranosidase [Schwanniomyces occidentalis],6S1T_B Chain B, Fructofuranosidase [Schwanniomyces occidentalis],6S2B_A Chain A, Fructofuranosidase [Schwanniomyces occidentalis],6S2B_B Chain B, Fructofuranosidase [Schwanniomyces occidentalis] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
3.43e-244 | 1 | 474 | 41 | 514 | Extracellular endo-inulinase inuA OS=Aspergillus niger OX=5061 GN=inuA PE=1 SV=1 |
|
6.91e-244 | 1 | 474 | 41 | 514 | Extracellular endo-inulinase inu2 OS=Aspergillus ficuum OX=5058 GN=inu2 PE=1 SV=1 |
|
1.98e-243 | 1 | 474 | 41 | 514 | Extracellular endo-inulinase inuB OS=Aspergillus niger OX=5061 GN=inuB PE=1 SV=1 |
|
3.08e-240 | 1 | 474 | 41 | 514 | Extracellular endo-inulinase inuA OS=Aspergillus niger (strain CBS 513.88 / FGSC A1513) OX=425011 GN=inuA PE=1 SV=1 |
|
3.27e-240 | 1 | 469 | 31 | 499 | Putative glycosyl hydrolase ecdF OS=Aspergillus rugulosus OX=41736 GN=ecdF PE=3 SV=1 |
Other | SP_Sec_SPI | CS Position |
---|---|---|
1.000051 | 0.000001 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.