logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: ETI24042.1

You are here: Home > Sequence: ETI24042.1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Cladophialophora carrionii
Lineage Ascomycota; Eurotiomycetes; ; Herpotrichiellaceae; Cladophialophora; Cladophialophora carrionii
CAZyme ID ETI24042.1
CAZy Family GH28
CAZyme Description Aamy domain-containing protein [Source:UniProtKB/TrEMBL;Acc:V9DDK0]
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
554 62291.77 7.2713
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_CcarrioniiCBS160.54 10428 1279043 55 10373
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.1:2 3.2.1.116:1 2.4.1.-:1

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 63 408 6.3e-129 0.9912280701754386

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
200457 AmyAc_bac_fung_AmyA 0.0 27 432 1 391
Alpha amylase catalytic domain found in bacterial and fungal Alpha amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes bacterial and fungal proteins. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
236518 PRK09441 0.0 26 521 2 478
cytoplasmic alpha-amylase; Reviewed
200453 AmyAc_arch_bac_plant_AmyA 2.47e-47 30 434 2 295
Alpha amylase catalytic domain found in archaeal, bacterial, and plant Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes AmyA from bacteria, archaea, water fleas, and plants. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
215419 PLN02784 4.10e-18 32 431 507 833
alpha-amylase
165762 PLN00196 3.20e-16 7 407 6 351
alpha-amylase; Provisional

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
3.55e-181 23 535 32 527
1.30e-170 23 526 36 522
4.14e-169 29 537 2 495
1.35e-167 26 528 19 507
1.35e-167 26 528 19 507

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2.15e-141 27 521 4 480
Bacillus Licheniformis Alpha-Amylase [Bacillus licheniformis]
1.22e-140 27 521 4 480
Structure Of Alpha-Amylase Precursor [Bacillus licheniformis]
1.38e-139 27 521 4 480
Kinetic stabilization of Bacillus licheniformis alpha-amylase through introduction of hydrophobic residues at the surface [Bacillus licheniformis]
7.81e-139 27 521 4 480
Crystal structure of Bacillus paralicheniformis wild-type alpha-amylase [Bacillus licheniformis],6TOZ_A Crystal structure of Bacillus paralicheniformis alpha-amylase in complex with acarbose [Bacillus licheniformis],6TP0_A Crystal structure of Bacillus paralicheniformis alpha-amylase in complex with maltose [Bacillus licheniformis],6TP1_A Crystal structure of Bacillus paralicheniformis alpha-amylase in complex with maltotetraose [Bacillus licheniformis],6TP2_A Crystal structure of Bacillus paralicheniformis alpha-amylase in complex with beta-cyclodextrin [Bacillus licheniformis]
1.21e-135 27 523 6 484
Crystal structure of maltohexaose-producing amylase from alkalophilic Bacillus sp.707. [Bacillus sp. 707],1WPC_A Crystal structure of maltohexaose-producing amylase complexed with pseudo-maltononaose [Bacillus sp. 707],2D3L_A Crystal structure of maltohexaose-producing amylase from Bacillus sp.707 complexed with maltopentaose. [Bacillus sp. 707],2D3N_A Crystal structure of maltohexaose-producing amylase from Bacillus sp.707 complexed with maltohexaose [Bacillus sp. 707]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7.08e-141 11 521 17 509
Alpha-amylase OS=Bacillus licheniformis OX=1402 GN=amyS PE=1 SV=1
1.19e-134 27 540 39 545
Alpha-amylase OS=Geobacillus stearothermophilus OX=1422 GN=amyS PE=1 SV=3
1.79e-134 27 523 39 517
Glucan 1,4-alpha-maltohexaosidase OS=Bacillus sp. (strain 707) OX=1416 PE=1 SV=1
1.42e-132 27 521 33 511
Alpha-amylase OS=Bacillus amyloliquefaciens OX=1390 PE=1 SV=1
1.51e-111 26 521 2 489
Cytoplasmic alpha-amylase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) OX=99287 GN=amyA PE=3 SV=3

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
0.833729 0.166259

TMHMM  Annotations      help

There is no transmembrane helices in ETI24042.1.