logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: EPrPVT00000023286-p1

You are here: Home > Sequence: EPrPVT00000023286-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Phytopythium vexans
Lineage Oomycota; NA; ; Pythiaceae; Phytopythium; Phytopythium vexans
CAZyme ID EPrPVT00000023286-p1
CAZy Family GT48
CAZyme Description Alpha-glucosidase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
847 91900.71 5.5657
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_PvexansDAOMBR484 11991 1223560 34 11957
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.1:4 3.2.1.98:1 3.2.1.20:35 3.2.1.177:14

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH31 460 847 2.2e-109 0.7517564402810304

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
269888 GH31_MGAM_SI_GAA 0.0 478 847 1 353
maltase-glucoamylase, sucrase-isomaltase, lysosomal acid alpha-glucosidase. This subgroup includes the following three closely related glycosyl hydrolase family 31 (GH31) enzymes: maltase-glucoamylase (MGAM), sucrase-isomaltase (SI), and lysosomal acid alpha-glucosidase (GAA), also known as acid-maltase. MGAM is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. SI is implicated in the digestion of dietary starch and major disaccharides such as sucrose and isomaltose, while GAA degrades glycogen in the lysosome, cleaving both alpha-1,4 and alpha-1,6 glucosidic linkages. MGAM and SI are anchored to small-intestinal brush-border epithelial cells. The absence of SI from the brush border membrane or its malfunction is associated with malabsorption disorders such as congenital sucrase-isomaltase deficiency (CSID). The domain architectures of MGAM and SI include two tandem GH31 catalytic domains, an N-terminal domain found near the membrane-bound end, and a C-terminal luminal domain. Both of the tandem GH31 domains of MGAM and SI are included in this family. The domain architecture of GAA includes an N-terminal TFF (trefoil factor family) domain in addition to the GH31 catalytic domain. Deficient GAA expression causes Pompe disease, an autosomal recessive genetic disorder also known as glycogen storage disease type II (GSDII).
395838 Glyco_hydro_31 2.39e-144 460 847 2 339
Glycosyl hydrolases family 31. Glycosyl hydrolases are key enzymes of carbohydrate metabolism. Family 31 comprises of enzymes that are, or similar to, alpha- galactosidases.
269890 GH31_glucosidase_II_MalA 1.62e-112 478 847 1 322
Alpha-glucosidase II-like. Alpha-glucosidase II (alpha-D-glucoside glucohydrolase) is a glycosyl hydrolase family 31 (GH31) enzyme, found in bacteria and plants, which has exo-alpha-1,4-glucosidase and oligo-1,6-glucosidase activities. Alpha-glucosidase II has been characterized in Bacillus thermoamyloliquefaciens where it forms a homohexamer. This subgroup also includes the MalA alpha-glucosidase from Sulfolobus solfataricus and the AglA alpha-glucosidase from Picrophilus torridus. MalA is part of the carbohydrate-metabolizing machinery that allows this organism to utilize carbohydrates, such as maltose, as the sole carbon and energy source.
269886 GH31_MGAM-like 7.76e-94 478 847 1 254
maltase-glucoamylase (MGAM)-like. This family includes the following closely related glycosyl hydrolase family 31 (GH31) enzymes: maltase-glucoamylase (MGAM), sucrase-isomaltase (SI), lysosomal acid alpha-glucosidase (GAA), neutral alpha-glucosidase C (GANC), the alpha subunit of neutral alpha-glucosidase AB (GANAB), and alpha-glucosidase II. MGAM is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. SI is implicated in the digestion of dietary starch and major disaccharides such as sucrose and isomaltose, while GAA degrades glycogen in the lysosome, cleaving both alpha-1,4 and alpha-1,6 glucosidic linkages. MGAM and SI are anchored to small-intestinal brush-border epithelial cells. The absence of SI from the brush border membrane or its malfunction is associated with malabsorption disorders such as congenital sucrase-isomaltase deficiency (CSID). The domain architectures of MGAM and SI include two tandem GH31 catalytic domains, an N-terminal domain found near the membrane-bound end and a C-terminal luminal domain. Both of the tandem GH31 domains of MGAM and SI are included in this family. The domain architecture of GAA includes an N-terminal TFF (trefoil factor family) domain in addition to the GH31 catalytic domain. Deficient GAA expression causes Pompe disease, an autosomal recessive genetic disorder also known as glycogen storage disease type II (GSDII). GANC and GANAB are key enzymes in glycogen metabolism that hydrolyze terminal, non-reducing 1,4-linked alpha-D-glucose residues from glycogen in the endoplasmic reticulum. Alpha-glucosidase II is a GH31 enzyme, found in bacteria and plants, which has exo-alpha-1,4-glucosidase and oligo-1,6-glucosidase activities. Alpha-glucosidase II has been characterized in Bacillus thermoamyloliquefaciens where it forms a homohexamer. This family also includes the MalA alpha-glucosidase from Sulfolobus solfataricus and the AglA alpha-glucosidase from Picrophilus torridus. MalA is part of the carbohydrate-metabolizing machinery that allows this organism to utilize carbohydrates, such as maltose, as the sole carbon and energy source. The MGAM-like family corresponds to subgroup 1 in the Ernst et al classification of GH31 enzymes.
224418 YicI 1.69e-89 313 847 99 567
Alpha-glucosidase, glycosyl hydrolase family GH31 [Carbohydrate transport and metabolism].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
7.01e-203 272 847 61 644
6.27e-193 239 847 22 643
1.76e-188 269 847 60 650
9.82e-188 269 847 60 650
4.95e-186 243 847 29 646

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3.62e-177 272 847 73 654
Sugar beet alpha-glucosidase with acarbose [Beta vulgaris],3W38_A Sugar beet alpha-glucosidase [Beta vulgaris],3WEL_A Sugar beet alpha-glucosidase with acarviosyl-maltotriose [Beta vulgaris],3WEM_A Sugar beet alpha-glucosidase with acarviosyl-maltotetraose [Beta vulgaris],3WEN_A Sugar beet alpha-glucosidase with acarviosyl-maltopentaose [Beta vulgaris],3WEO_A Sugar beet alpha-glucosidase with acarviosyl-maltohexaose [Beta vulgaris]
8.44e-132 270 828 104 638
Crystal structure of the N-terminal domain of sucrase-isomaltase [Homo sapiens],3LPO_B Crystal structure of the N-terminal domain of sucrase-isomaltase [Homo sapiens],3LPO_C Crystal structure of the N-terminal domain of sucrase-isomaltase [Homo sapiens],3LPO_D Crystal structure of the N-terminal domain of sucrase-isomaltase [Homo sapiens],3LPP_A Crystal complex of N-terminal sucrase-isomaltase with kotalanol [Homo sapiens],3LPP_B Crystal complex of N-terminal sucrase-isomaltase with kotalanol [Homo sapiens],3LPP_C Crystal complex of N-terminal sucrase-isomaltase with kotalanol [Homo sapiens],3LPP_D Crystal complex of N-terminal sucrase-isomaltase with kotalanol [Homo sapiens]
7.48e-128 272 847 78 631
Crystral Structure of the N-terminal Subunit of Human Maltase-Glucoamylase [Homo sapiens],2QMJ_A Crystral Structure of the N-terminal Subunit of Human Maltase-Glucoamylase in Complex with Acarbose [Homo sapiens],3CTT_A Crystal complex of N-terminal Human Maltase-Glucoamylase with Casuarine [Homo sapiens]
8.46e-128 272 847 78 631
Crystal complex of N-terminal Human Maltase-Glucoamylase with BJ2661 [Homo sapiens],3L4U_A Crystal complex of N-terminal Human Maltase-Glucoamylase with de-O-sulfonated kotalanol [Homo sapiens],3L4V_A Crystal complex of N-terminal Human Maltase-Glucoamylase with kotalanol [Homo sapiens],3L4W_A Crystal complex of N-terminal Human Maltase-Glucoamylase with miglitol [Homo sapiens],3L4X_A Crystal complex of N-terminal Human Maltase-Glucoamylase with NR4-8 [Homo sapiens],3L4Y_A Crystal complex of N-terminal Human Maltase-Glucoamylase with NR4-8II [Homo sapiens],3L4Z_A Crystal complex of N-terminal Human Maltase-Glucoamylase with Salacinol [Homo sapiens]
1.10e-127 268 847 76 623
Crystal structure of human lysosomal acid-alpha-glucosidase, GAA [Homo sapiens],5NN5_A Crystal structure of human lysosomal acid-alpha-glucosidase, GAA, in complex with 1-deoxynojirimycin [Homo sapiens],5NN6_A Crystal structure of human lysosomal acid-alpha-glucosidase, GAA, in complex with N-hydroxyethyl-1-deoxynojirimycin [Homo sapiens],5NN8_A Crystal structure of human lysosomal acid-alpha-glucosidase, GAA, in complex with acarbose [Homo sapiens]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3.37e-174 272 847 61 649
Alpha-xylosidase 1 OS=Arabidopsis thaliana OX=3702 GN=XYL1 PE=1 SV=1
4.49e-174 272 847 73 654
Alpha-glucosidase OS=Beta vulgaris OX=161934 PE=1 SV=1
2.14e-168 272 847 68 650
Alpha-glucosidase OS=Spinacia oleracea OX=3562 PE=1 SV=1
1.55e-166 245 847 34 626
Probable alpha-glucosidase Os06g0675700 OS=Oryza sativa subsp. japonica OX=39947 GN=Os06g0675700 PE=1 SV=1
6.85e-166 275 847 59 620
Alpha-glucosidase OS=Hordeum vulgare OX=4513 PE=2 SV=1

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI CS Position
0.000201 0.999826 CS pos: 22-23. Pr: 0.9722

TMHMM  Annotations      help

There is no transmembrane helices in EPrPVT00000023286-p1.