logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: ELR02640.1

You are here: Home > Sequence: ELR02640.1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Pseudogymnoascus destructans
Lineage Ascomycota; Leotiomycetes; ; Pseudeurotiaceae; Pseudogymnoascus; Pseudogymnoascus destructans
CAZyme ID ELR02640.1
CAZy Family AA3
CAZyme Description Aamy domain-containing protein [Source:UniProtKB/TrEMBL;Acc:L8FNT9]
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
385 43721.37 5.5144
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_Pdestructans20631-21 9225 658429 150 9075
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.1:2 3.2.1.116:1 2.4.1.-:1

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 31 211 1.3e-42 0.6491228070175439

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
200457 AmyAc_bac_fung_AmyA 3.65e-81 31 279 62 369
Alpha amylase catalytic domain found in bacterial and fungal Alpha amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes bacterial and fungal proteins. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
236518 PRK09441 3.24e-78 31 368 64 479
cytoplasmic alpha-amylase; Reviewed
200458 AmyAc_euk_AmyA 4.69e-10 126 200 174 242
Alpha amylase catalytic domain found in eukaryotic Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes eukaryotic alpha-amylases including proteins from fungi, sponges, and protozoans. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
223443 AmyA 6.07e-10 69 191 110 227
Glycosidase [Carbohydrate transport and metabolism].
200455 AmyAc_bac2_AmyA 1.23e-09 83 208 116 241
Alpha amylase catalytic domain found in bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes Chloroflexi, Dictyoglomi, and Fusobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
9.15e-111 31 385 70 506
1.03e-110 32 385 75 510
2.53e-108 31 380 408 838
3.70e-108 34 385 77 510
2.09e-107 35 385 78 510

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7.38e-45 31 370 66 485
Crystal structure of maltohexaose-producing amylase from alkalophilic Bacillus sp.707. [Bacillus sp. 707],1WPC_A Crystal structure of maltohexaose-producing amylase complexed with pseudo-maltononaose [Bacillus sp. 707],2D3L_A Crystal structure of maltohexaose-producing amylase from Bacillus sp.707 complexed with maltopentaose. [Bacillus sp. 707],2D3N_A Crystal structure of maltohexaose-producing amylase from Bacillus sp.707 complexed with maltohexaose [Bacillus sp. 707]
5.14e-44 31 370 64 483
Structure Of Alpha-Amylase Precursor [Bacillus licheniformis]
7.12e-43 31 370 64 483
Kinetic stabilization of Bacillus licheniformis alpha-amylase through introduction of hydrophobic residues at the surface [Bacillus licheniformis]
1.37e-42 31 370 64 483
Bacillus Licheniformis Alpha-Amylase [Bacillus licheniformis]
2.56e-42 31 370 62 481
Chain A, Alpha Amylase [Sutcliffiella halmapala]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6.51e-44 31 370 99 518
Glucan 1,4-alpha-maltohexaosidase OS=Bacillus sp. (strain 707) OX=1416 PE=1 SV=1
4.23e-43 31 370 93 512
Alpha-amylase OS=Bacillus licheniformis OX=1402 GN=amyS PE=1 SV=1
3.41e-40 31 368 99 515
Alpha-amylase OS=Geobacillus stearothermophilus OX=1422 GN=amyS PE=1 SV=3
1.99e-38 31 370 93 514
Alpha-amylase OS=Bacillus amyloliquefaciens OX=1390 PE=1 SV=1
6.73e-35 31 368 64 490
Cytoplasmic alpha-amylase OS=Escherichia coli (strain K12) OX=83333 GN=amyA PE=1 SV=3

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000043 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in ELR02640.1.