logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: EKG18694.1

You are here: Home > Sequence: EKG18694.1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Macrophomina phaseolina
Lineage Ascomycota; Dothideomycetes; ; Botryosphaeriaceae; Macrophomina; Macrophomina phaseolina
CAZyme ID EKG18694.1
CAZy Family GH65
CAZyme Description Carbohydrate binding module family 6
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
453 AHHD01000180|CGC1 47818.12 5.7456
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_MphaseolinaMS6 14712 1126212 906 13806
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.145:1 3.2.1.145:1

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH43 41 279 8e-86 0.9878048780487805

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
350142 GH43_Pc3Gal43A-like 3.43e-146 33 294 1 261
Glycosyl hydrolase family 43 protein such as Phanerochaete chrysosporium exo-beta-1,3-galactanase (Pc1, 3Gal43A, 1,3Gal43A). This glycosyl hydrolase family 43 (GH43) subgroup includes characterized enzymes with exo-beta-1,3-galactanase (EC 3.2.1.145, also known as galactan 1,3-beta-galactosidase) activity such as Phanerochaete chrysosporium 1,3Gal43A (Pc1, 3Gal43A), Fusarium oxysporum 12S Fo/1 (3Gal), and Streptomyces sp. 19(2012) SGalase1 and SGalase2. It belongs to the GH43_CtGH43 subgroup of the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43_CtGH43 includes proteins such as Clostridium thermocellum exo-beta-1,3-galactanase (Ct1,3Gal43A or CtGH43) which is comprised of the GH43 domain, a CBM13 domain, and a dockerin domain, exhibits an unusual ability to hydrolyze beta-1,3-galactan in the presence of a beta-1,6 linked branch, and is missing an essential acidic residue suggesting a mechanism by which it bypasses beta-1,6 linked branches in the substrate. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
350143 GH43_CtGH43-like 6.18e-102 33 295 1 266
Glycosyl hydrolase family 43 protein such as Clostridium thermocellum exo-beta-1,3-galactanase (Ct1,3Gal43A or CtGH43). This glycosyl hydrolase family 43 (GH43) subgroup includes characterized enzymes with exo-beta-1,3-galactanase (EC 3.2.1.145, also known as galactan 1,3-beta-galactosidase) activity such as Clostridium thermocellum exo-beta-1,3-galactanase (Ct1,3Gal43A or CtGH43), Streptomyces avermitilis MA-4680 = NBRC 14893 (Sa1,3Gal43A;SAV2109) (1,3Gal43A), and Ruminiclostridium thermocellum ATCC 27405 (Ct1,3Gal43A;CtGH43;Cthe_0661) (1,3Gal43A). It belongs to the GH43_CtGH43 subgroup of the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43_CtGH43 includes proteins such as Clostridium thermocellum exo-beta-1,3-galactanase (Ct1,3Gal43A or CtGH43) which is comprised of the GH43 domain, a CBM13 domain, and a dockerin domain, exhibits an unusual ability to hydrolyze beta-1,3-galactan in the presence of a beta-1,6 linked branch, and is missing an essential acidic residue suggesting a mechanism by which it bypasses beta-1,6 linked branches in the substrate. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
350099 GH43_CtGH43-like 2.96e-95 33 295 1 273
Glycosyl hydrolase family 43 protein such as Clostridium thermocellum exo-beta-1,3-galactanase CtGH43 and Ruminococcus champanellensis arabinanase Ara43A. This glycosyl hydrolase family 43 (GH43) subgroup includes characterized enzymes with exo-beta-1,3-galactanase (EC 3.2.1.145, also known as galactan 1,3-beta-galactosidase) activity such as Clostridium thermocellum (Ct1,3Gal43A or CtGH43) and Phanerochaete chrysosporium 1,3Gal43A (Pc1, 3Gal43A), and arabinanase (EC 3.2.1.99) activity such as Ruminococcus champanellensis Ara43A. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
350146 GH43_CtGH43-like 9.10e-94 33 294 1 284
Glycosyl hydrolase family 43 protein similar to Clostridium thermocellum exo-beta-1,3-galactanase CtGH43 and Ruminococcus champanellensis arabinanase Ara43A. This uncharacterized glycosyl hydrolase family 43 (GH43) subgroup belongs to a subgroup which includes characterized enzymes with exo-beta-1,3-galactanase (EC 3.2.1.145, also known as galactan 1,3-beta-galactosidase) activity such as Clostridium thermocellum (Ct1,3Gal43A or CtGH43) and Phanerochaete chrysosporium 1,3Gal43A (Pc1, 3Gal43A), and arabinanase (EC 3.2.1.99) activity such as Ruminococcus champanellensis Ara43A. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
350147 GH43_CtGH43-like 4.64e-63 33 294 1 268
Glycosyl hydrolase family 43 protein similar to Clostridium thermocellum exo-beta-1,3-galactanase CtGH43 and Ruminococcus champanellensis arabinanase Ara43A. This uncharacterized glycosyl hydrolase family 43 (GH43) subgroup belongs to a subgroup which includes characterized enzymes with exo-beta-1,3-galactanase (EC 3.2.1.145, also known as galactan 1,3-beta-galactosidase) activity such as Clostridium thermocellum (Ct1,3Gal43A or CtGH43) and Phanerochaete chrysosporium 1,3Gal43A (Pc1, 3Gal43A), and arabinanase (EC 3.2.1.99) activity such as Ruminococcus champanellensis Ara43A. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. Many GH43 enzymes display both alpha-L-arabinofuranosidase and beta-D-xylosidase activity using aryl-glycosides as substrates. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
1.17e-252 5 453 9 456
1.63e-205 7 453 11 446
3.51e-200 7 451 11 445
6.57e-200 3 453 7 445
1.00e-178 13 453 21 450

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2.28e-86 17 450 2 426
Chain A, Galactan 1,3-beta-galactosidase [Phanerodontia chrysosporium],7BYS_B Chain B, Galactan 1,3-beta-galactosidase [Phanerodontia chrysosporium],7BYT_A Chain A, Galactan 1,3-beta-galactosidase [Phanerodontia chrysosporium]
6.58e-86 17 450 3 427
Chain A, Galactan 1,3-beta-galactosidase [Phanerodontia chrysosporium]
1.79e-85 17 450 2 426
Chain A, Galactan 1,3-beta-galactosidase [Phanerodontia chrysosporium],7BYX_B Chain B, Galactan 1,3-beta-galactosidase [Phanerodontia chrysosporium],7BYX_C Chain C, Galactan 1,3-beta-galactosidase [Phanerodontia chrysosporium],7BYX_D Chain D, Galactan 1,3-beta-galactosidase [Phanerodontia chrysosporium]
9.64e-66 21 302 6 292
Crystal structure of putative exo-beta-1,3-galactanase from Bifidobacterium bifidum s17 [Bifidobacterium bifidum S17],5FLW_B Crystal structure of putative exo-beta-1,3-galactanase from Bifidobacterium bifidum s17 [Bifidobacterium bifidum S17]
1.17e-61 18 299 41 334
Chain A, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VSF_B Chain B, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VSF_C Chain C, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VSF_D Chain D, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VSF_E Chain E, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VSF_F Chain F, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VSZ_A Chain A, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VSZ_B Chain B, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VSZ_C Chain C, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VSZ_D Chain D, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VSZ_E Chain E, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VSZ_F Chain F, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT0_A Chain A, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT0_B Chain B, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT0_C Chain C, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT0_D Chain D, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT0_E Chain E, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT0_F Chain F, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT1_A Chain A, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT1_B Chain B, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT1_C Chain C, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT1_D Chain D, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT1_E Chain E, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT1_F Chain F, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT2_A Chain A, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT2_B Chain B, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT2_C Chain C, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT2_D Chain D, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT2_E Chain E, Ricin B lectin [Acetivibrio thermocellus ATCC 27405],3VT2_F Chain F, Ricin B lectin [Acetivibrio thermocellus ATCC 27405]

Swiss-Prot Hits      help

EKG18694.1 has no Swissprot hit.

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI CS Position
0.000278 0.999716 CS pos: 21-22. Pr: 0.8981

TMHMM  Annotations      help

There is no transmembrane helices in EKG18694.1.