Species | Gaeumannomyces tritici | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Ascomycota; Sordariomycetes; ; Magnaporthaceae; Gaeumannomyces; Gaeumannomyces tritici | |||||||||||
CAZyme ID | EJT72355.1 | |||||||||||
CAZy Family | CE4 | |||||||||||
CAZyme Description | Aamy domain-containing protein [Source:UniProtKB/TrEMBL;Acc:J3P6S9] | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH13 | 223 | 542 | 1.7e-31 | 0.8795986622073578 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
200488 | AmyAc_4 | 7.47e-34 | 153 | 591 | 7 | 386 | Alpha amylase catalytic domain found in an uncharacterized protein family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. |
223373 | GlgB | 3.30e-25 | 15 | 662 | 40 | 586 | 1,4-alpha-glucan branching enzyme [Carbohydrate transport and metabolism]. |
200464 | AmyAc_GTHase | 1.21e-24 | 157 | 544 | 33 | 362 | Alpha amylase catalytic domain found in Glycosyltrehalose trehalohydrolase (also called Maltooligosyl trehalose Trehalohydrolase). Glycosyltrehalose trehalohydrolase (GTHase) was discovered as part of a coupled system for the production of trehalose from soluble starch. In the first half of the reaction, glycosyltrehalose synthase (GTSase), an intramolecular glycosyl transferase, converts the glycosidic bond between the last two glucose residues of amylose from an alpha-1,4 bond to an alpha-1,1 bond, making a non-reducing glycosyl trehaloside. In the second half of the reaction, GTHase cleaves the alpha-1,4 glycosidic bond adjacent to the trehalose moiety to release trehalose and malto-oligosaccharide. Like isoamylase and other glycosidases that recognize branched oligosaccharides, GTHase contains an N-terminal extension and does not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Glycosyltrehalose Trehalohydrolase Maltooligosyltrehalose Trehalohydrolase |
200477 | AmyAc_CMD | 1.14e-17 | 223 | 591 | 65 | 384 | Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. |
200451 | AmyAc_family | 2.29e-17 | 190 | 537 | 7 | 253 | Alpha amylase catalytic domain family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; and C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost this catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
2.36e-217 | 6 | 684 | 85 | 743 | |
2.87e-194 | 6 | 683 | 126 | 765 | |
5.89e-183 | 6 | 681 | 3 | 669 | |
7.54e-181 | 6 | 681 | 3 | 669 | |
2.24e-170 | 5 | 681 | 7 | 700 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
4.59e-08 | 175 | 542 | 99 | 445 | Crystal structure of Deinococcus radiodurans maltooligosyltrehalose trehalohydrolase [Deinococcus radiodurans] |
|
6.05e-08 | 175 | 542 | 99 | 445 | Crystal structure of Deinococcus radiodurans maltooligosyltrehalose trehalohydrolase in complex with trehalose [Deinococcus radiodurans],2BHZ_A Crystal structure of Deinococcus radiodurans maltooligosyltrehalose trehalohydrolase in complex with maltose [Deinococcus radiodurans R1],2BXY_A Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection [Deinococcus radiodurans],2BXZ_A Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection [Deinococcus radiodurans],2BY0_A Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection [Deinococcus radiodurans],2BY1_A Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection [Deinococcus radiodurans R1],2BY2_A Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection [Deinococcus radiodurans R1],2BY3_A Is radiation damage dependent on the dose-rate used during macromolecular crystallography data collection [Deinococcus radiodurans] |
|
1.07e-07 | 223 | 543 | 163 | 461 | 1.4 Angstrom Resolution Crystal Structure of Putative alpha Amylase from Salmonella typhimurium. [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2] |
|
2.54e-07 | 226 | 599 | 204 | 572 | Crystal structure of Pullulanase from Paenibacillus barengoltzii complex with beta-cyclodextrin [Paenibacillus barengoltzii],6JFJ_A Crystal structure of Pullulanase from Paenibacillus barengoltzii complex with maltohexaose and alpha-cyclodextrin [Paenibacillus barengoltzii],6JFX_A Crystal structure of Pullulanase from Paenibacillus barengoltzii complex with maltopentaose [Paenibacillus barengoltzii],6JHF_A Crystal structure of apo Pullulanase from Paenibacillus barengoltzii [Paenibacillus barengoltzii],6JHG_A Crystal structure of apo Pullulanase from Paenibacillus barengoltzii in space group P212121 [Paenibacillus barengoltzii] |
|
1.01e-06 | 226 | 599 | 204 | 572 | Crystal structure of mutant D350A of Pullulanase from Paenibacillus barengoltzii complexed with maltotriose [Paenibacillus barengoltzii] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
1.47e-08 | 223 | 634 | 185 | 543 | Maltogenic alpha-amylase OS=Bacillus acidopullulyticus OX=28030 PE=3 SV=1 |
|
1.18e-07 | 74 | 595 | 139 | 666 | Isoamylase 1, chloroplastic OS=Arabidopsis thaliana OX=3702 GN=ISA1 PE=1 SV=1 |
|
1.18e-07 | 223 | 595 | 264 | 674 | Isoamylase SU1, chloroplastic OS=Zea mays OX=4577 GN=SU1 PE=1 SV=1 |
|
2.98e-07 | 223 | 544 | 131 | 425 | Malto-oligosyltrehalose trehalohydrolase OS=Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) OX=273057 GN=treZ PE=1 SV=1 |
|
7.10e-07 | 175 | 542 | 99 | 443 | Malto-oligosyltrehalose trehalohydrolase OS=Deinococcus radiodurans (strain ATCC 13939 / DSM 20539 / JCM 16871 / LMG 4051 / NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422) OX=243230 GN=treZ PE=1 SV=1 |
Other | SP_Sec_SPI | CS Position |
---|---|---|
1.000062 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.