Species | Exophiala dermatitidis | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Ascomycota; Eurotiomycetes; ; Herpotrichiellaceae; Exophiala; Exophiala dermatitidis | |||||||||||
CAZyme ID | EHY60354.1 | |||||||||||
CAZy Family | GT58 | |||||||||||
CAZyme Description | alpha-amylase | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH13 | 96 | 460 | 2.9e-51 | 0.9464882943143813 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
200489 | AmyAc_5 | 0.0 | 37 | 501 | 1 | 443 | Alpha amylase catalytic domain found in an uncharacterized protein family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. |
200478 | AmyAc_bac_CMD_like_2 | 6.71e-48 | 34 | 504 | 1 | 343 | Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. |
395077 | Alpha-amylase | 1.21e-40 | 98 | 459 | 1 | 332 | Alpha amylase, catalytic domain. Alpha amylase is classified as family 13 of the glycosyl hydrolases. The structure is an 8 stranded alpha/beta barrel containing the active site, interrupted by a ~70 a.a. calcium-binding domain protruding between beta strand 3 and alpha helix 3, and a carboxyl-terminal Greek key beta-barrel domain. |
200458 | AmyAc_euk_AmyA | 3.33e-37 | 29 | 503 | 2 | 370 | Alpha amylase catalytic domain found in eukaryotic Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes eukaryotic alpha-amylases including proteins from fungi, sponges, and protozoans. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. |
223443 | AmyA | 7.60e-36 | 36 | 457 | 1 | 360 | Glycosidase [Carbohydrate transport and metabolism]. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
5.41e-252 | 5 | 619 | 17 | 633 | |
9.06e-237 | 26 | 619 | 20 | 615 | |
9.06e-237 | 26 | 595 | 20 | 586 | |
9.06e-237 | 26 | 595 | 20 | 586 | |
9.06e-237 | 26 | 595 | 20 | 586 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
1.87e-33 | 37 | 619 | 10 | 491 | FIVE-DOMAIN ALPHA-AMYLASE FROM BACILLUS STEAROTHERMOPHILUS, MALTOSE/ACARBOSE COMPLEX [Geobacillus stearothermophilus],1QHP_A Five-Domain Alpha-Amylase From Bacillus Stearothermophilus, Maltose Complex [Geobacillus stearothermophilus] |
|
3.00e-32 | 34 | 521 | 32 | 444 | Chain A, Cyclomaltodextrin glucanotransferase [Caldanaerobacter subterraneus],6WNI_B Chain B, Cyclomaltodextrin glucanotransferase [Caldanaerobacter subterraneus],6WNU_A Chain A, Cyclomaltodextrin glucanotransferase [Caldanaerobacter subterraneus] |
|
2.39e-31 | 33 | 511 | 7 | 371 | Crystal structure of alpha-amylase from Geobacillus thermoleovorans, GTA, complexed with acarbose [Geobacillus thermoleovorans CCB_US3_UF5] |
|
4.77e-27 | 33 | 469 | 6 | 342 | Crystal Structure of Anoxybacillus Alpha-amylase Provides Insights into a New Glycosyl Hydrolase Subclass [Anoxybacillus ayderensis] |
|
7.31e-27 | 33 | 469 | 40 | 376 | Crystal Structure of Anoxybacillus Alpha-amylase Provides Insights into a New Glycosyl Hydrolase Subclass [Anoxybacillus ayderensis],5A2C_A Crystal Structure of Anoxybacillus Alpha-amylase Provides Insights into a New Glycosyl Hydrolase Subclass [Anoxybacillus ayderensis] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
3.08e-42 | 95 | 523 | 95 | 540 | Alpha-amylase OS=Streptomyces lividans OX=1916 GN=amy PE=1 SV=1 |
|
1.11e-32 | 37 | 619 | 43 | 524 | Maltogenic alpha-amylase OS=Geobacillus stearothermophilus OX=1422 GN=amyM PE=1 SV=2 |
|
2.95e-27 | 15 | 483 | 6 | 372 | Uncharacterized glycosyl hydrolase C11E10.09c OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=SPCC11E10.09c PE=3 SV=1 |
|
1.66e-26 | 36 | 511 | 43 | 472 | Cyclomaltodextrin glucanotransferase OS=Klebsiella oxytoca OX=571 GN=cgt PE=3 SV=1 |
|
1.77e-25 | 31 | 513 | 742 | 1118 | Beta/alpha-amylase OS=Paenibacillus polymyxa OX=1406 PE=1 SV=1 |
Other | SP_Sec_SPI | CS Position |
---|---|---|
1.000032 | 0.000026 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.