logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: EDK45179.1

You are here: Home > Sequence: EDK45179.1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Lodderomyces elongisporus
Lineage Ascomycota; Saccharomycetes; ; Debaryomycetaceae; Lodderomyces; Lodderomyces elongisporus
CAZyme ID EDK45179.1
CAZy Family GT21
CAZyme Description phosphatidylinositol N-acetylglucosaminyltransferase GPI3 subunit
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
477 CH981527|CGC1 54066.77 6.7079
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_LelongisporusNRRLYB-4239 5908 379508 109 5799
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.198:3

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 227 360 1.8e-32 0.8375

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
340827 GT4_PIG-A-like 0.0 5 439 1 398
phosphatidylinositol N-acetylglucosaminyltransferase subunit A and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Phosphatidylinositol glycan-class A (PIG-A), an X-linked gene in humans, is necessary for the synthesis of N-acetylglucosaminyl-phosphatidylinositol, a very early intermediate in glycosyl phosphatidylinositol (GPI)-anchor biosynthesis. The GPI-anchor is an important cellular structure that facilitates the attachment of many proteins to cell surfaces. Somatic mutations in PIG-A have been associated with Paroxysmal Nocturnal Hemoglobinuria (PNH), an acquired hematological disorder.
400541 PIGA 1.38e-56 43 132 1 90
PIGA (GPI anchor biosynthesis). This domain is found on phosphatidylinositol n-acetylglucosaminyltransferase proteins. These proteins are involved in GPI anchor biosynthesis and are associated with disease the paroxysmal nocturnal haemoglobinuria.
340831 GT4_PimA-like 4.42e-50 5 406 1 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
223515 RfaB 3.79e-38 5 408 2 377
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
340844 GT4_UGDG-like 1.38e-35 5 408 1 372
UDP-Glc:1,2-diacylglycerol 3-a-glucosyltransferase and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. UDP-glucose-diacylglycerol glucosyltransferase (EC 2.4.1.337, UGDG; also known as 1,2-diacylglycerol 3-glucosyltransferase) catalyzes the transfer of glucose from UDP-glucose to 1,2-diacylglycerol forming 3-D-glucosyl-1,2-diacylglycerol.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
1.36e-254 4 466 3 432
1.05e-249 4 472 3 438
4.48e-242 4 465 3 431
2.00e-240 4 477 3 442
4.43e-239 4 465 3 431

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4.60e-12 14 355 23 330
Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_B Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_C Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_D Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_E Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_F Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_G Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_H Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_I Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_J Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_K Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_L Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames]
5.01e-12 14 355 43 350
Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_B Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_C Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_D Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_E Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_F Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_G Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_H Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis]
1.78e-10 14 355 13 320
Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D00_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D01_A Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168],5D01_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168]
3.44e-08 239 412 229 409
Structure of the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4Q_B Structure of the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4V_A Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum],3C4V_B Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum]
3.53e-08 239 412 249 429
Structure of the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum],3C48_B Structure of the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1.40e-181 8 461 1 417
Phosphatidylinositol N-acetylglucosaminyltransferase gpi3 subunit OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=gpi3 PE=3 SV=1
8.70e-177 4 466 3 439
Phosphatidylinositol N-acetylglucosaminyltransferase GPI3 subunit OS=Saccharomyces cerevisiae (strain YJM789) OX=307796 GN=SPT14 PE=3 SV=1
2.48e-176 4 466 3 439
Phosphatidylinositol N-acetylglucosaminyltransferase GPI3 subunit OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=SPT14 PE=1 SV=4
2.48e-176 4 466 3 439
Phosphatidylinositol N-acetylglucosaminyltransferase GPI3 subunit OS=Saccharomyces cerevisiae (strain AWRI1631) OX=545124 GN=SPT14 PE=3 SV=2
2.48e-176 4 466 3 439
Phosphatidylinositol N-acetylglucosaminyltransferase GPI3 subunit OS=Saccharomyces cerevisiae (strain RM11-1a) OX=285006 GN=SPT14 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
0.999867 0.000163

TMHMM  Annotations      download full data without filtering help

Start End
434 453