Species | Aspergillus fischeri | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Ascomycota; Eurotiomycetes; ; Aspergillaceae; Aspergillus; Aspergillus fischeri | |||||||||||
CAZyme ID | EAW17466.1 | |||||||||||
CAZy Family | GH105 | |||||||||||
CAZyme Description | alpha-1,2-mannosyltransferase (Alg2), putative | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location |
EC | 2.4.1.257:6 | 2.4.1.132:6 |
---|
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
340834 | GT4_ALG2-like | 0.0 | 8 | 429 | 2 | 392 | alpha-1,3/1,6-mannosyltransferase ALG2 and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. ALG2, a 1,3-mannosyltransferase, in yeast catalyzes the mannosylation of Man(2)GlcNAc(2)-dolichol diphosphate and Man(1)GlcNAc(2)-dolichol diphosphate to form Man(3)GlcNAc(2)-dolichol diphosphate. A deficiency of this enzyme causes an abnormal accumulation of Man1GlcNAc2-PP-dolichol and Man2GlcNAc2-PP-dolichol, which is associated with a type of congenital disorders of glycosylation (CDG), designated CDG-Ii, in humans. |
340831 | GT4_PimA-like | 5.45e-42 | 8 | 433 | 1 | 365 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
223515 | RfaB | 2.66e-34 | 9 | 440 | 5 | 381 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
395425 | Glycos_transf_1 | 5.85e-29 | 231 | 415 | 1 | 158 | Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family. |
340835 | GT4_ALG11-like | 1.67e-28 | 106 | 421 | 109 | 412 | alpha-1,2-mannosyltransferase ALG11 and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. ALG11 in yeast is involved in adding the final 1,2-linked Man to the Man5GlcNAc2-PP-Dol synthesized on the cytosolic face of the ER. The deletion analysis of ALG11 was shown to block the early steps of core biosynthesis that takes place on the cytoplasmic face of the ER and lead to a defect in the assembly of lipid-linked oligosaccharides. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
4.85e-265 | 1 | 472 | 1 | 480 | |
1.90e-264 | 1 | 472 | 38 | 517 | |
2.80e-264 | 1 | 472 | 1 | 480 | |
1.61e-263 | 1 | 472 | 1 | 480 | |
6.30e-263 | 1 | 472 | 38 | 517 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
2.06e-09 | 331 | 439 | 253 | 354 | UDP Glucose alpha tetrahydrobiopterin glycosyltransferase from Synechococcus species PCC 7942 - BH2 complex form [Synechococcus elongatus PCC 7942 = FACHB-805],5ZER_B UDP Glucose alpha tetrahydrobiopterin glycosyltransferase from Synechococcus species PCC 7942 - BH2 complex form [Synechococcus elongatus PCC 7942 = FACHB-805],5ZFK_A UDP Glucose alpha tetrahydrobiopterin glycosyltransferase from Synechococcus species PCC 7942 - UDP-BH2 complex [Synechococcus elongatus PCC 7942 = FACHB-805] |
|
2.70e-09 | 236 | 385 | 27 | 149 | Crystal Structure of the Putative Mannosyl Transferase (wbaZ-1)from Archaeoglobus fulgidus, Northeast Structural Genomics Target GR29A. [Archaeoglobus fulgidus DSM 4304] |
|
2.73e-09 | 331 | 437 | 253 | 352 | UDP Glucose alpha tetrahydrobiopterin glycosyltransferase from Synechococcus species PCC 7942 - apo form [Synechococcus elongatus PCC 7942 = FACHB-805],5ZE7_B UDP Glucose alpha tetrahydrobiopterin glycosyltransferase from Synechococcus species PCC 7942 - apo form [Synechococcus elongatus PCC 7942 = FACHB-805],5ZES_A UDP Glucose alpha tetrahydrobiopterin glycosyltransferase from Synechococcus species PCC 7942 - UDP complex [Synechococcus elongatus PCC 7942 = FACHB-805],5ZES_B UDP Glucose alpha tetrahydrobiopterin glycosyltransferase from Synechococcus species PCC 7942 - UDP complex [Synechococcus elongatus PCC 7942 = FACHB-805],5ZFK_B UDP Glucose alpha tetrahydrobiopterin glycosyltransferase from Synechococcus species PCC 7942 - UDP-BH2 complex [Synechococcus elongatus PCC 7942 = FACHB-805] |
|
3.94e-08 | 175 | 440 | 142 | 379 | Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D00_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D01_A Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168],5D01_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168] |
|
1.28e-07 | 330 | 441 | 281 | 390 | Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_B Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_C Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_D Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_E Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_F Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_G Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_H Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_I Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_J Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_K Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_L Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
1.41e-135 | 8 | 463 | 12 | 466 | Alpha-1,3/1,6-mannosyltransferase alg-2 OS=Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) OX=367110 GN=alg-2 PE=3 SV=1 |
|
1.25e-105 | 6 | 456 | 16 | 449 | Alpha-1,3/1,6-mannosyltransferase alg2 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=alg2 PE=3 SV=2 |
|
1.36e-103 | 5 | 436 | 4 | 423 | Alpha-1,3/1,6-mannosyltransferase ALG2 OS=Rhizomucor pusillus OX=4840 GN=ALG2 PE=1 SV=1 |
|
1.23e-98 | 2 | 441 | 4 | 440 | Alpha-1,3/1,6-mannosyltransferase ALG2 OS=Kluyveromyces lactis (strain ATCC 8585 / CBS 2359 / DSM 70799 / NBRC 1267 / NRRL Y-1140 / WM37) OX=284590 GN=ALG2 PE=3 SV=1 |
|
2.76e-96 | 8 | 471 | 11 | 462 | Alpha-1,3/1,6-mannosyltransferase ALG2 OS=Debaryomyces hansenii (strain ATCC 36239 / CBS 767 / BCRC 21394 / JCM 1990 / NBRC 0083 / IGC 2968) OX=284592 GN=ALG2 PE=3 SV=2 |
Other | SP_Sec_SPI | CS Position |
---|---|---|
1.000058 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.