logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: EAQ90247.1

You are here: Home > Sequence: EAQ90247.1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Chaetomium globosum
Lineage Ascomycota; Sordariomycetes; ; Chaetomiaceae; Chaetomium; Chaetomium globosum
CAZyme ID EAQ90247.1
CAZy Family GH51
CAZyme Description Alpha-1,3-glucan synthase [Source:UniProtKB/TrEMBL;Acc:Q2HC72]
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
2097 CH408030|CGC18 233827.63 6.6734
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_CglobosumCBS148.51 11232 306901 184 11048
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.183:18 2.4.1.-:2 2.4.1.183:36 2.4.1.-:11

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 8 407 2e-179 0.995
GH13 1001 1472 5.9e-73 0.9875

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
200462 AmyAc_AGS 0.0 2 487 87 569
Alpha amylase catalytic domain found in Alpha 1,3-glucan synthase (also called uridine diphosphoglucose-1,3-alpha-glucan glucosyltransferase and 1,3-alpha-D-glucan synthase). Alpha 1,3-glucan synthase (AGS, EC 2.4.1.183) is an enzyme that catalyzes the reversible chemical reaction of UDP-glucose and [alpha-D-glucosyl-(1-3)]n to form UDP and [alpha-D-glucosyl-(1-3)]n+1. AGS is a component of fungal cell walls. The cell wall of filamentous fungi is composed of 10-15% chitin and 10-35% alpha-1,3-glucan. AGS is triggered in fungi as a response to cell wall stress and elongates the glucan chains in cell wall synthesis. This group includes proteins from Ascomycetes and Basidomycetes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
340822 GT5_Glycogen_synthase_DULL1-like 3.10e-107 1006 1481 2 474
Glycogen synthase GlgA and similar proteins. This family is most closely related to the GT5 family of glycosyltransferases. Glycogen synthase (EC:2.4.1.21) catalyzes the formation and elongation of the alpha-1,4-glucose backbone using ADP-glucose, the second and key step of glycogen biosynthesis. This family includes starch synthases of plants, such as DULL1 in Zea mays and glycogen synthases of various organisms.
223443 AmyA 1.39e-30 8 547 25 485
Glycosidase [Carbohydrate transport and metabolism].
223374 GlgA 1.91e-24 1658 2050 107 459
Glycogen synthase [Carbohydrate transport and metabolism].
200489 AmyAc_5 7.03e-24 6 425 44 410
Alpha amylase catalytic domain found in an uncharacterized protein family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
0.0 1 2097 100 2370
0.0 1 2097 100 2390
0.0 1 2097 100 2390
0.0 1 2097 100 2389
0.0 1 2097 94 2346

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3.82e-16 1058 1417 88 478
Granule Bound Starch Synthase I from Cyanophora paradoxa bound to acarbose and ADP [Cyanophora paradoxa],6GNG_B Granule Bound Starch Synthase I from Cyanophora paradoxa bound to acarbose and ADP [Cyanophora paradoxa]
1.23e-15 1136 1417 131 401
Chain A, Glycogen synthase [Escherichia coli]
1.29e-15 1136 1417 131 401
Crystal Structure of Wild-type E.coli GS in complex with ADP and Glucose(wtGSb) [Escherichia coli],2R4T_A Crystal Structure of Wild-type E.coli GS in Complex with ADP and Glucose(wtGSc) [Escherichia coli],2R4U_A Crystal Structure of Wild-type E.coli GS in complex with ADP and Glucose(wtGSd) [Escherichia coli],3GUH_A Crystal Structure of Wild-type E.coli GS in complex with ADP and DGM [Escherichia coli K-12]
6.94e-15 1136 1417 131 401
Chain A, Glycogen synthase [Escherichia coli],3CX4_A Chain A, Glycogen synthase [Escherichia coli]
4.12e-13 1137 1417 156 436
Crystal Structure of Rice Granule bound Starch Synthase I Catalytic Domain [Oryza sativa Japonica Group],3VUF_A Crystal Structure of Rice Granule bound Starch Synthase I Catalytic Domain in Complex with ADP [Oryza sativa Japonica Group]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
0.0 3 2097 100 2410
Cell wall alpha-1,3-glucan synthase ags1 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=ags1 PE=1 SV=3
0.0 3 2097 96 2397
Cell wall alpha-1,3-glucan synthase mok11 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=mok11 PE=3 SV=2
0.0 6 2095 100 2351
Cell wall alpha-1,3-glucan synthase mok12 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=mok12 PE=3 SV=1
0.0 3 2097 95 2358
Cell wall alpha-1,3-glucan synthase mok13 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=mok13 PE=3 SV=2
2.30e-287 920 2097 180 1369
Cell wall alpha-1,3-glucan synthase mok14 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=mok14 PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000053 0.000000

TMHMM  Annotations      download full data without filtering help

Start End
918 940
1675 1697
1707 1724
1731 1753
1768 1787
1799 1821
1841 1863
1886 1905
1920 1942
1949 1966
1981 2002
2022 2044
2064 2086