logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: CXQ85_001225-t46_1-p1

You are here: Home > Sequence: CXQ85_001225-t46_1-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species [Candida] haemuloni
Lineage Ascomycota; Saccharomycetes; ; Debaryomycetaceae; Candida; [Candida] haemuloni
CAZyme ID CXQ85_001225-t46_1-p1
CAZy Family GH17
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
697 PKFO01000001|CGC8 79440.16 6.7850
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_ChaemulonisB11899 5409 N/A 160 5249
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.11:48

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT3 12 655 1.1e-304 0.9984301412872841

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
340824 GT3_GSY2-like 0.0 7 607 1 590
glycogen synthase GSY2 and similar proteins. Glycogen synthase, which is most closely related to the GT3 family of glycosyltransferases, catalyzes the transfer of a glucose molecule from UDP-glucose to a terminal branch of a glycogen molecule, a rate-limit step of glycogen biosynthesis. GSY2, the member of this family in S. cerevisiae, has been shown to possess glycogen synthase activity.
399009 Glycogen_syn 0.0 12 662 1 639
Glycogen synthase. This family consists of the eukaryotic glycogen synthase proteins GYS1, GYS2 and GYS3. Glycogen synthase (GS) is the enzyme responsible for the synthesis of -1,4-linked glucose chains in glycogen. It is the rate limiting enzyme in the synthesis of the polysaccharide, and its activity is highly regulated through phosphorylation at multiple sites and also by allosteric effectors, mainly glucose 6-phosphate (G6P).
340816 Glycosyltransferase_GTB-type 5.38e-07 423 526 130 222
glycosyltransferase family 1 and related proteins with GTB topology. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. The structures of the formed glycoconjugates are extremely diverse, reflecting a wide range of biological functions. The members of this family share a common GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility.
223515 RfaB 1.33e-04 408 599 214 372
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
340831 GT4_PimA-like 4.95e-04 444 546 231 316
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
0.0 1 697 1 697
0.0 1 697 1 696
0.0 1 697 1 696
0.0 1 697 1 696
0.0 1 696 1 696

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
0.0 1 679 21 718
Basal state form of Yeast Glycogen Synthase [Saccharomyces cerevisiae],3NAZ_B Basal state form of Yeast Glycogen Synthase [Saccharomyces cerevisiae],3NAZ_C Basal state form of Yeast Glycogen Synthase [Saccharomyces cerevisiae],3NAZ_D Basal state form of Yeast Glycogen Synthase [Saccharomyces cerevisiae],3NCH_A Yeast Glycogen Synthase (Gsy2p) Basal State Conformation [Saccharomyces cerevisiae],3NCH_B Yeast Glycogen Synthase (Gsy2p) Basal State Conformation [Saccharomyces cerevisiae],3NCH_C Yeast Glycogen Synthase (Gsy2p) Basal State Conformation [Saccharomyces cerevisiae],3NCH_D Yeast Glycogen Synthase (Gsy2p) Basal State Conformation [Saccharomyces cerevisiae],3O3C_A Glycogen synthase basal state UDP complex [Saccharomyces cerevisiae],3O3C_B Glycogen synthase basal state UDP complex [Saccharomyces cerevisiae],3O3C_C Glycogen synthase basal state UDP complex [Saccharomyces cerevisiae],3O3C_D Glycogen synthase basal state UDP complex [Saccharomyces cerevisiae],3RSZ_A Maltodextran bound basal state conformation of yeast glycogen synthase isoform 2 [Saccharomyces cerevisiae],3RSZ_B Maltodextran bound basal state conformation of yeast glycogen synthase isoform 2 [Saccharomyces cerevisiae],3RSZ_C Maltodextran bound basal state conformation of yeast glycogen synthase isoform 2 [Saccharomyces cerevisiae],3RSZ_D Maltodextran bound basal state conformation of yeast glycogen synthase isoform 2 [Saccharomyces cerevisiae]
0.0 1 679 21 718
Glucose-6-Phosphate activated form of Yeast Glycogen Synthase [Saccharomyces cerevisiae],3NB0_B Glucose-6-Phosphate activated form of Yeast Glycogen Synthase [Saccharomyces cerevisiae],3NB0_C Glucose-6-Phosphate activated form of Yeast Glycogen Synthase [Saccharomyces cerevisiae],3NB0_D Glucose-6-Phosphate activated form of Yeast Glycogen Synthase [Saccharomyces cerevisiae],3RT1_A Maltodextarn bound activated state form of yeast glycogen synthase isoform 2 [Saccharomyces cerevisiae],3RT1_B Maltodextarn bound activated state form of yeast glycogen synthase isoform 2 [Saccharomyces cerevisiae],3RT1_C Maltodextarn bound activated state form of yeast glycogen synthase isoform 2 [Saccharomyces cerevisiae],3RT1_D Maltodextarn bound activated state form of yeast glycogen synthase isoform 2 [Saccharomyces cerevisiae],5SUL_A Inhibited state structure of yGsy2p [Saccharomyces cerevisiae S288C],5SUL_B Inhibited state structure of yGsy2p [Saccharomyces cerevisiae S288C]
0.0 1 679 20 717
Crystal structure of yeast glycogen synthase in complex with uridine-5'-monophosphate [Saccharomyces cerevisiae FostersO],4KQ1_B Crystal structure of yeast glycogen synthase in complex with uridine-5'-monophosphate [Saccharomyces cerevisiae FostersO],4KQ1_C Crystal structure of yeast glycogen synthase in complex with uridine-5'-monophosphate [Saccharomyces cerevisiae FostersO],4KQ1_D Crystal structure of yeast glycogen synthase in complex with uridine-5'-monophosphate [Saccharomyces cerevisiae FostersO],4KQ2_A Glucose1,2cyclic phosphate bound activated state of Yeast Glycogen Synthase [Saccharomyces cerevisiae FostersO],4KQ2_B Glucose1,2cyclic phosphate bound activated state of Yeast Glycogen Synthase [Saccharomyces cerevisiae FostersO],4KQ2_C Glucose1,2cyclic phosphate bound activated state of Yeast Glycogen Synthase [Saccharomyces cerevisiae FostersO],4KQ2_D Glucose1,2cyclic phosphate bound activated state of Yeast Glycogen Synthase [Saccharomyces cerevisiae FostersO]
0.0 1 679 20 717
Crystal structure of yeast glycogen synthase E169Q mutant in complex with glucose and UDP [Saccharomyces cerevisiae FostersO],4KQM_B Crystal structure of yeast glycogen synthase E169Q mutant in complex with glucose and UDP [Saccharomyces cerevisiae FostersO],4KQM_C Crystal structure of yeast glycogen synthase E169Q mutant in complex with glucose and UDP [Saccharomyces cerevisiae FostersO],4KQM_D Crystal structure of yeast glycogen synthase E169Q mutant in complex with glucose and UDP [Saccharomyces cerevisiae FostersO]
0.0 1 679 21 718
G6P bound activated state of yeast glycogen synthase 2 [Saccharomyces cerevisiae S288C],5SUK_B G6P bound activated state of yeast glycogen synthase 2 [Saccharomyces cerevisiae S288C],5SUK_C G6P bound activated state of yeast glycogen synthase 2 [Saccharomyces cerevisiae S288C],5SUK_D G6P bound activated state of yeast glycogen synthase 2 [Saccharomyces cerevisiae S288C]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
0.0 1 680 1 700
Glycogen [starch] synthase isoform 1 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=GSY1 PE=1 SV=3
0.0 2 693 8 690
Glycogen [starch] synthase OS=Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) OX=367110 GN=gsy-1 PE=2 SV=2
0.0 1 679 1 698
Glycogen [starch] synthase isoform 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=GSY2 PE=1 SV=3
2.97e-268 4 693 23 691
Glycogen [starch] synthase, muscle OS=Homo sapiens OX=9606 GN=GYS1 PE=1 SV=2
1.59e-267 4 693 23 694
Glycogen [starch] synthase, muscle OS=Oryctolagus cuniculus OX=9986 GN=GYS1 PE=1 SV=4

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000068 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in CXQ85_001225-t46_1-p1.