logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: CPSG_08533-t26_1-p1

You are here: Home > Sequence: CPSG_08533-t26_1-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Coccidioides posadasii
Lineage Ascomycota; Eurotiomycetes; ; Onygenaceae; Coccidioides; Coccidioides posadasii
CAZyme ID CPSG_08533-t26_1-p1
CAZy Family GT2|GT2
CAZyme Description chitin synthase 5
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
1491 164539.83 7.8643
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_CposadasiiSilveira 10379 443226 154 10225
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.16:11

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 1220 1487 1.8e-120 0.5313092979127134

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
276845 MYSc_Myo17 0.0 20 782 1 645
class XVII myosin, motor domain. This fungal myosin which is also known as chitin synthase uses its motor domain to tether its vesicular cargo to peripheral actin. It works in opposition to dynein, contributing to the retention of Mcs1 vesicles at the site of cell growth and increasing vesicle fusion necessary for polarized growth. Class 17 myosins consist of a N-terminal myosin motor domain with Cyt-b5, chitin synthase 2, and a DEK_C domains at it C-terminus. The chitin synthase region contains several transmembrane domains by which myosin 17 is thought to bind secretory vesicles. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
214580 MYSc 1.10e-159 9 787 11 677
Myosin. Large ATPases. ATPase; molecular motor. Muscle contraction consists of a cyclical interaction between myosin and actin. The core of the myosin structure is similar in fold to that of kinesin.
367353 Chitin_synth_2 8.58e-145 1220 1491 2 286
Chitin synthase. Members of this family are fungal chitin synthase EC:2.4.1.16 enzymes. They catalyze chitin synthesis as follows: UDP-N-acetyl-D-glucosamine + {(1,4)-(N-acetyl-beta-D-glucosaminyl)}(N) <=> UDP + {(1,4)-(N-acetyl-beta-D-glucosaminyl)}(N+1).
276950 MYSc 3.55e-84 75 775 60 633
Myosin motor domain superfamily. Myosin motor domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
395017 Myosin_head 6.37e-67 75 773 71 672
Myosin head (motor domain).

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
0.0 1 1491 1 1491
0.0 1 1491 1 1491
0.0 3 1491 11 1495
0.0 5 1491 11 1493
0.0 3 1491 11 1498

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2.02e-47 75 784 136 736
Crystal structure of myosin X motor domain in pre-powerstroke state [Homo sapiens],5I0H_B Crystal structure of myosin X motor domain in pre-powerstroke state [Homo sapiens]
3.36e-47 75 784 134 734
Crystal structure of myosin X motor domain with 2IQ motifs in pre-powerstroke state [Homo sapiens],5I0I_B Crystal structure of myosin X motor domain with 2IQ motifs in pre-powerstroke state [Homo sapiens]
2.02e-45 75 784 134 734
Rigor myosin X co-complexed with an actin filament [Homo sapiens]
3.10e-44 28 774 32 679
Structure of the Actin-Tropomyosin-Myosin Complex (rigor ATM 3) [Dictyostelium discoideum],4A7F_G Structure of the Actin-Tropomyosin-Myosin Complex (rigor ATM 3) [Dictyostelium discoideum],4A7F_J Structure of the Actin-Tropomyosin-Myosin Complex (rigor ATM 3) [Dictyostelium discoideum],4A7H_C Structure of the Actin-Tropomyosin-Myosin Complex (rigor ATM 2) [Dictyostelium discoideum],4A7H_I Structure of the Actin-Tropomyosin-Myosin Complex (rigor ATM 2) [Dictyostelium discoideum],4A7H_J Structure of the Actin-Tropomyosin-Myosin Complex (rigor ATM 2) [Dictyostelium discoideum],4A7L_C Structure of the Actin-Tropomyosin-Myosin Complex (rigor ATM 1) [Dictyostelium discoideum],4A7L_G Structure of the Actin-Tropomyosin-Myosin Complex (rigor ATM 1) [Dictyostelium discoideum],4A7L_J Structure of the Actin-Tropomyosin-Myosin Complex (rigor ATM 1) [Dictyostelium discoideum]
1.32e-43 28 774 32 679
Motor Domain Of Myoe, A Class-i Myosin [Dictyostelium discoideum],1LKX_B Motor Domain Of Myoe, A Class-i Myosin [Dictyostelium discoideum],1LKX_C Motor Domain Of Myoe, A Class-i Myosin [Dictyostelium discoideum],1LKX_D Motor Domain Of Myoe, A Class-i Myosin [Dictyostelium discoideum]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4.46e-317 29 1491 25 1513
Chitin synthase 8 OS=Ustilago maydis (strain 521 / FGSC 9021) OX=237631 GN=CHS8 PE=3 SV=1
2.83e-284 75 1491 101 1501
Chitin synthase 5 OS=Cryptococcus neoformans var. grubii serotype A (strain H99 / ATCC 208821 / CBS 10515 / FGSC 9487) OX=235443 GN=CHS5 PE=2 SV=1
1.52e-171 878 1491 148 754
Chitin synthase 4 OS=Cryptococcus neoformans var. grubii serotype A (strain H99 / ATCC 208821 / CBS 10515 / FGSC 9487) OX=235443 GN=CHS4 PE=2 SV=2
1.01e-160 884 1491 61 655
Chitin synthase 6 OS=Ustilago maydis (strain 521 / FGSC 9021) OX=237631 GN=CHS6 PE=3 SV=2
1.53e-63 896 1491 75 713
Chitin synthase 1 OS=Cryptococcus neoformans var. grubii serotype A (strain H99 / ATCC 208821 / CBS 10515 / FGSC 9487) OX=235443 GN=CHS1 PE=2 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000061 0.000000

TMHMM  Annotations      download full data without filtering help

Start End
896 915
935 952