logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: CDH48283.1

You are here: Home > Sequence: CDH48283.1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Lichtheimia corymbifera
Lineage Mucoromycota; Mucoromycetes; ; Lichtheimiaceae; Lichtheimia; Lichtheimia corymbifera
CAZyme ID CDH48283.1
CAZy Family AA1
CAZyme Description udp-glycosyltransferase glycogen phosphorylase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
1236 CBTN010000001|CGC3 139769.46 7.2003
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_LcorymbiferaJMRCFSU9682 12379 1263082 97 12282
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.173:13

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT1 798 1218 2.1e-51 0.9764397905759162

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
340817 GT1_Gtf-like 1.01e-72 797 1216 1 399
UDP-glycosyltransferases and similar proteins. This family includes the Gtfs, a group of homologous glycosyltransferases involved in the final stages of the biosynthesis of antibiotics vancomycin and related chloroeremomycin. Gtfs transfer sugar moieties from an activated NDP-sugar donor to the oxidatively cross-linked heptapeptide core of vancomycin group antibiotics. The core structure is important for the bioactivity of the antibiotics.
224732 YjiC 5.28e-50 796 1218 1 395
UDP:flavonoid glycosyltransferase YjiC, YdhE family [Carbohydrate transport and metabolism].
397255 Glyco_transf_28 1.40e-28 799 934 1 139
Glycosyltransferase family 28 N-terminal domain. The glycosyltransferase family 28 includes monogalactosyldiacylglycerol synthase (EC 2.4.1.46) and UDP-N-acetylglucosamine transferase (EC 2.4.1.-). This N-terminal domain contains the acceptor binding site and likely membrane association site. This family also contains a large number of proteins that probably have quite distinct activities.
275402 PH-GRAM1_AGT26 8.77e-28 137 250 1 116
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 1. ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.
275403 PH-GRAM2_AGT26 8.33e-20 638 730 1 91
Autophagy-related protein 26/Sterol 3-beta-glucosyltransferase Pleckstrin homology (PH) domain, repeat 2. ATG26 (also called UGT51/UDP-glycosyltransferase 51), a member of the glycosyltransferase 28 family, resulting in the biosynthesis of sterol glucoside. ATG26 in decane metabolism and autophagy. There are 32 known autophagy-related (ATG) proteins, 17 are components of the core autophagic machinery essential for all autophagy-related pathways and 15 are the additional components required only for certain pathways or species. The core autophagic machinery includes 1) the ATG9 cycling system (ATG1, ATG2, ATG9, ATG13, ATG18, and ATG27), 2) the phosphatidylinositol 3-kinase complex (ATG6/VPS30, ATG14, VPS15, and ATG34), and 3) the ubiquitin-like protein system (ATG3, ATG4, ATG5, ATG7, ATG8, ATG10, ATG12, and ATG16). Less is known about how the core machinery is adapted or modulated with additional components to accommodate the nonselective sequestration of bulk cytosol (autophagosome formation) or selective sequestration of specific cargos (Cvt vesicle, pexophagosome, or bacteria-containing autophagosome formation). The pexophagosome-specific additions include the ATG30-ATG11-ATG17 receptor-adaptors complex, the coiled-coil protein ATG25, and the sterol glucosyltransferase ATG26. ATG26 is necessary for the degradation of medium peroxisomes. It contains 2 GRAM domains and a single PH domain. PH domains are only found in eukaryotes. They share little sequence conservation, but all have a common fold, which is electrostatically polarized. PH domains also have diverse functions. They are often involved in targeting proteins to the plasma membrane, but few display strong specificity in lipid binding. Any specificity is usually determined by loop regions or insertions in the N-terminus of the domain, which are not conserved across all PH domains. PH domains are found in cellular signaling proteins such as serine/threonine kinase, tyrosine kinases, regulators of G-proteins, endocytotic GTPases, adaptors, as well as cytoskeletal associated molecules and in lipid associated enzymes.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
0.0 1 1235 1 1219
9.06e-246 122 1226 4 930
2.17e-207 104 1225 343 1373
2.17e-207 104 1225 343 1373
7.96e-207 104 1225 343 1373

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1.04e-127 793 1226 16 443
Sterol 3-beta-glucosyltransferase (ugt51) from Saccharomyces cerevisiae (strain ATCC 204508 / S288c) [Saccharomyces cerevisiae S288C],5XVM_B Sterol 3-beta-glucosyltransferase (ugt51) from Saccharomyces cerevisiae (strain ATCC 204508 / S288c) [Saccharomyces cerevisiae S288C]
1.99e-127 793 1226 36 463
Sterol 3-beta-glucosyltransferase (ugt51) from Saccharomyces cerevisiae (strain ATCC 204508 / S288c): UDPG complex [Saccharomyces cerevisiae S288C],5GL5_B Sterol 3-beta-glucosyltransferase (ugt51) from Saccharomyces cerevisiae (strain ATCC 204508 / S288c): UDPG complex [Saccharomyces cerevisiae S288C]
2.17e-25 805 1203 9 364
Chimeric Glycosyltransferase for the generation of novel natural products [Amycolatopsis orientalis],3H4T_A Chimeric Glycosyltransferase for the generation of novel natural products - GtfAH1 in complex with UDP-2F-Glc [Amycolatopsis orientalis]
1.22e-22 797 1214 1 391
Crystal Structure of UDP-glucosyltransferase GtfB [Amycolatopsis orientalis]
3.26e-18 797 1171 1 348
X-ray crystal structure of TDP-vancosaminyltransferase GtfD as a complex with TDP and the natural substrate, desvancosaminyl vancomycin. [Amycolatopsis orientalis],1RRV_B X-ray crystal structure of TDP-vancosaminyltransferase GtfD as a complex with TDP and the natural substrate, desvancosaminyl vancomycin. [Amycolatopsis orientalis]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1.41e-200 104 1226 237 1374
Sterol 3-beta-glucosyltransferase ATG26 OS=Gibberella zeae (strain ATCC MYA-4620 / CBS 123657 / FGSC 9075 / NRRL 31084 / PH-1) OX=229533 GN=ATG26 PE=3 SV=1
3.31e-200 104 1226 386 1467
Sterol 3-beta-glucosyltransferase OS=Cryptococcus neoformans var. neoformans serotype D (strain JEC21 / ATCC MYA-565) OX=214684 GN=ATG26 PE=3 SV=1
4.63e-200 104 1226 386 1467
Sterol 3-beta-glucosyltransferase OS=Cryptococcus neoformans var. neoformans serotype D (strain B-3501A) OX=283643 GN=ATG26 PE=3 SV=1
1.80e-198 97 1226 227 1329
Sterol 3-beta-glucosyltransferase OS=Aspergillus clavatus (strain ATCC 1007 / CBS 513.65 / DSM 816 / NCTC 3887 / NRRL 1 / QM 1276 / 107) OX=344612 GN=atg26 PE=3 SV=1
8.00e-198 97 1226 226 1313
Sterol 3-beta-glucosyltransferase OS=Aspergillus oryzae (strain ATCC 42149 / RIB 40) OX=510516 GN=atg26 PE=3 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000045 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in CDH48283.1.