logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: CC1G_15736-t26_1-p1

You are here: Home > Sequence: CC1G_15736-t26_1-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Coprinopsis cinerea
Lineage Basidiomycota; Agaricomycetes; ; Psathyrellaceae; Coprinopsis; Coprinopsis cinerea
CAZyme ID CC1G_15736-t26_1-p1
CAZy Family PL42
CAZyme Description NAD-dependent epimerase/dehydratase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
959 AACS02000011|CGC2 106949.93 7.2508
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_Ccinereaokay7-130 13657 240176 301 13356
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in CC1G_15736-t26_1-p1.

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
187581 GME-like_SDR_e 3.22e-87 3 329 10 318
Arabidopsis thaliana GDP-mannose-3',5'-epimerase (GME)-like, extended (e) SDRs. This subgroup of NDP-sugar epimerase/dehydratases are extended SDRs; they have the characteristic active site tetrad, and an NAD-binding motif: TGXXGXX[AG], which is a close match to the canonical NAD-binding motif. Members include Arabidopsis thaliana GDP-mannose-3',5'-epimerase (GME) which catalyzes the epimerization of two positions of GDP-alpha-D-mannose to form GDP-beta-L-galactose. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.
178298 PLN02695 4.76e-79 5 329 33 335
GDP-D-mannose-3',5'-epimerase
223528 WcaG 8.21e-43 5 329 12 314
Nucleoside-diphosphate-sugar epimerase [Cell wall/membrane/envelope biogenesis].
187566 UDP_AE_SDR_e 3.38e-36 6 323 12 304
UDP-N-acetylglucosamine 4-epimerase, extended (e) SDRs. This subgroup contains UDP-N-acetylglucosamine 4-epimerase of Pseudomonas aeruginosa, WbpP, an extended SDR, that catalyzes the NAD+ dependent conversion of UDP-GlcNAc and UDPGalNA to UDP-Glc and UDP-Gal. This subgroup has the characteristic active site tetrad and NAD-binding motif of the extended SDRs. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.
187574 UDP_G4E_5_SDR_e 2.32e-35 5 322 11 299
UDP-glucose 4-epimerase (G4E), subgroup 5, extended (e) SDRs. This subgroup partially conserves the characteristic active site tetrad and NAD-binding motif of the extended SDRs, and has been identified as possible UDP-glucose 4-epimerase (aka UDP-galactose 4-epimerase), a homodimeric member of the extended SDR family. UDP-glucose 4-epimerase catalyzes the NAD-dependent conversion of UDP-galactose to UDP-glucose, the final step in Leloir galactose synthesis. Extended SDRs are distinct from classical SDRs. In addition to the Rossmann fold (alpha/beta folding pattern with a central beta-sheet) core region typical of all SDRs, extended SDRs have a less conserved C-terminal extension of approximately 100 amino acids. Extended SDRs are a diverse collection of proteins, and include isomerases, epimerases, oxidoreductases, and lyases; they typically have a TGXXGXXG cofactor binding motif. SDRs are a functionally diverse family of oxidoreductases that have a single domain with a structurally conserved Rossmann fold, an NAD(P)(H)-binding region, and a structurally diverse C-terminal region. Sequence identity between different SDR enzymes is typically in the 15-30% range; they catalyze a wide range of activities including the metabolism of steroids, cofactors, carbohydrates, lipids, aromatic compounds, and amino acids, and act in redox sensing. Classical SDRs have an TGXXX[AG]XG cofactor binding motif and a YXXXK active site motif, with the Tyr residue of the active site motif serving as a critical catalytic residue (Tyr-151, human 15-hydroxyprostaglandin dehydrogenase numbering). In addition to the Tyr and Lys, there is often an upstream Ser and/or an Asn, contributing to the active site; while substrate binding is in the C-terminal region, which determines specificity. The standard reaction mechanism is a 4-pro-S hydride transfer and proton relay involving the conserved Tyr and Lys, a water molecule stabilized by Asn, and nicotinamide. Atypical SDRs generally lack the catalytic residues characteristic of the SDRs, and their glycine-rich NAD(P)-binding motif is often different from the forms normally seen in classical or extended SDRs. Complex (multidomain) SDRs such as ketoreductase domains of fatty acid synthase have a GGXGXXG NAD(P)-binding motif and an altered active site motif (YXXXN). Fungal type ketoacyl reductases have a TGXXXGX(1-2)G NAD(P)-binding motif.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
2.19e-316 5 954 28 1011
7.76e-310 4 953 28 1014
5.46e-309 5 953 28 1010
8.75e-236 5 910 23 925
2.56e-34 569 957 25 384

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3.86e-56 5 329 41 344
gdp-mannose-3', 5' -epimerase (arabidopsis thaliana), with gdp-alpha-d-mannose and gdp-beta-l-galactose bound in the active site. [Arabidopsis thaliana],2C59_B gdp-mannose-3', 5' -epimerase (arabidopsis thaliana), with gdp-alpha-d-mannose and gdp-beta-l-galactose bound in the active site. [Arabidopsis thaliana]
9.87e-56 5 329 41 344
gdp-mannose-3', 5' -epimerase (arabidopsis thaliana),k178r, with gdp-beta-l-gulose and gdp-4-keto-beta-l-gulose bound in active site. [Arabidopsis thaliana],2C54_B gdp-mannose-3', 5' -epimerase (arabidopsis thaliana),k178r, with gdp-beta-l-gulose and gdp-4-keto-beta-l-gulose bound in active site. [Arabidopsis thaliana]
1.35e-55 5 329 41 344
GDP-mannose-3', 5' -epimerase (Arabidopsis thaliana),Y174F, with GDP-beta-L-galactose bound in the active site [Arabidopsis thaliana],2C5A_B GDP-mannose-3', 5' -epimerase (Arabidopsis thaliana),Y174F, with GDP-beta-L-galactose bound in the active site [Arabidopsis thaliana]
2.53e-55 5 329 41 344
gdp-mannose-3', 5' -epimerase (arabidopsis thaliana), k217a, with gdp-alpha-d-mannose bound in the active site. [Arabidopsis thaliana],2C5E_B gdp-mannose-3', 5' -epimerase (arabidopsis thaliana), k217a, with gdp-alpha-d-mannose bound in the active site. [Arabidopsis thaliana]
7.41e-17 5 318 15 305
UDP-GlcNAc C4-epimerase from Pseudomonas protegens in complex with NAD and UDP-GlcNAc [Pseudomonas protegens Pf-5],6WJB_B UDP-GlcNAc C4-epimerase from Pseudomonas protegens in complex with NAD and UDP-GlcNAc [Pseudomonas protegens Pf-5]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1.26e-57 5 333 41 347
GDP-mannose 3,5-epimerase 1 OS=Oryza sativa subsp. japonica OX=39947 GN=GME-1 PE=1 SV=1
2.69e-57 5 329 34 336
GDP-mannose 3,5-epimerase 2 OS=Oryza sativa subsp. japonica OX=39947 GN=GME-2 PE=2 SV=2
8.35e-57 5 333 41 347
GDP-mannose 3,5-epimerase 1 OS=Oryza sativa subsp. indica OX=39946 GN=OsI_032456 PE=2 SV=1
1.88e-55 5 329 39 342
GDP-mannose 3,5-epimerase OS=Arabidopsis thaliana OX=3702 GN=At5g28840 PE=1 SV=1
2.11e-19 2 322 17 320
dTDP-4-dehydro-6-deoxy-D-allose reductase OS=Streptomyces bikiniensis OX=1896 GN=chmD PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000067 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in CC1G_15736-t26_1-p1.