logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: ASPVEDRAFT_72328-t33_1-p1

You are here: Home > Sequence: ASPVEDRAFT_72328-t33_1-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Aspergillus versicolor
Lineage Ascomycota; Eurotiomycetes; ; Aspergillaceae; Aspergillus; Aspergillus versicolor
CAZyme ID ASPVEDRAFT_72328-t33_1-p1
CAZy Family GT1
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
948 KV878129|CGC13 106623.78 4.9480
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_AversicolorCBS583.65 13364 1036611 142 13222
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.20:9 3.2.1.84:3

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH31 259 831 1.3e-138 0.9953161592505855

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
269888 GH31_MGAM_SI_GAA 2.94e-166 280 741 2 367
maltase-glucoamylase, sucrase-isomaltase, lysosomal acid alpha-glucosidase. This subgroup includes the following three closely related glycosyl hydrolase family 31 (GH31) enzymes: maltase-glucoamylase (MGAM), sucrase-isomaltase (SI), and lysosomal acid alpha-glucosidase (GAA), also known as acid-maltase. MGAM is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. SI is implicated in the digestion of dietary starch and major disaccharides such as sucrose and isomaltose, while GAA degrades glycogen in the lysosome, cleaving both alpha-1,4 and alpha-1,6 glucosidic linkages. MGAM and SI are anchored to small-intestinal brush-border epithelial cells. The absence of SI from the brush border membrane or its malfunction is associated with malabsorption disorders such as congenital sucrase-isomaltase deficiency (CSID). The domain architectures of MGAM and SI include two tandem GH31 catalytic domains, an N-terminal domain found near the membrane-bound end, and a C-terminal luminal domain. Both of the tandem GH31 domains of MGAM and SI are included in this family. The domain architecture of GAA includes an N-terminal TFF (trefoil factor family) domain in addition to the GH31 catalytic domain. Deficient GAA expression causes Pompe disease, an autosomal recessive genetic disorder also known as glycogen storage disease type II (GSDII).
395838 Glyco_hydro_31 8.02e-166 260 831 1 442
Glycosyl hydrolases family 31. Glycosyl hydrolases are key enzymes of carbohydrate metabolism. Family 31 comprises of enzymes that are, or similar to, alpha- galactosidases.
269889 GH31_GANC_GANAB_alpha 4.68e-109 280 873 2 467
neutral alpha-glucosidase C, neutral alpha-glucosidase AB. This subgroup includes the closely related glycosyl hydrolase family 31 (GH31) isozymes, neutral alpha-glucosidase C (GANC) and the alpha subunit of heterodimeric neutral alpha-glucosidase AB (GANAB). Initially distinguished on the basis of differences in electrophoretic mobility in starch gel, GANC and GANAB have been shown to have other differences, including those of substrate specificity. GANC and GANAB are key enzymes in glycogen metabolism that hydrolyze terminal, non-reducing 1,4-linked alpha-D-glucose residues from glycogen in the endoplasmic reticulum. The GANC/GANAB family includes the alpha-glucosidase II (ModA) from Dictyostelium discoideum as well as the alpha-glucosidase II (GLS2, or ROT2 - Reversal of TOR2 lethality protein 2) from Saccharomyces cerevisiae.
224418 YicI 1.78e-105 62 912 46 750
Alpha-glucosidase, glycosyl hydrolase family GH31 [Carbohydrate transport and metabolism].
269890 GH31_glucosidase_II_MalA 1.82e-88 280 744 2 339
Alpha-glucosidase II-like. Alpha-glucosidase II (alpha-D-glucoside glucohydrolase) is a glycosyl hydrolase family 31 (GH31) enzyme, found in bacteria and plants, which has exo-alpha-1,4-glucosidase and oligo-1,6-glucosidase activities. Alpha-glucosidase II has been characterized in Bacillus thermoamyloliquefaciens where it forms a homohexamer. This subgroup also includes the MalA alpha-glucosidase from Sulfolobus solfataricus and the AglA alpha-glucosidase from Picrophilus torridus. MalA is part of the carbohydrate-metabolizing machinery that allows this organism to utilize carbohydrates, such as maltose, as the sole carbon and energy source.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
0.0 1 948 1 948
0.0 1 948 1 949
0.0 1 948 1 949
0.0 1 948 1 949
0.0 1 948 1 949

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1.41e-145 71 871 72 798
Sugar beet alpha-glucosidase with acarbose [Beta vulgaris],3W38_A Sugar beet alpha-glucosidase [Beta vulgaris],3WEL_A Sugar beet alpha-glucosidase with acarviosyl-maltotriose [Beta vulgaris],3WEM_A Sugar beet alpha-glucosidase with acarviosyl-maltotetraose [Beta vulgaris],3WEN_A Sugar beet alpha-glucosidase with acarviosyl-maltopentaose [Beta vulgaris],3WEO_A Sugar beet alpha-glucosidase with acarviosyl-maltohexaose [Beta vulgaris]
1.63e-130 44 913 54 829
Crystal structure of human lysosomal acid-alpha-glucosidase, GAA [Homo sapiens],5NN5_A Crystal structure of human lysosomal acid-alpha-glucosidase, GAA, in complex with 1-deoxynojirimycin [Homo sapiens],5NN6_A Crystal structure of human lysosomal acid-alpha-glucosidase, GAA, in complex with N-hydroxyethyl-1-deoxynojirimycin [Homo sapiens],5NN8_A Crystal structure of human lysosomal acid-alpha-glucosidase, GAA, in complex with acarbose [Homo sapiens]
1.63e-130 44 913 54 829
Crystal structure of human lysosomal acid-alpha-glucosidase, GAA, in complex with N-acetyl-cysteine [Homo sapiens]
3.35e-130 44 913 56 831
Crystal structure of human GAA [Homo sapiens],5KZX_A Crystal structure of human GAA [Homo sapiens]
8.03e-123 46 919 46 827
Crystral Structure of the N-terminal Subunit of Human Maltase-Glucoamylase [Homo sapiens],2QMJ_A Crystral Structure of the N-terminal Subunit of Human Maltase-Glucoamylase in Complex with Acarbose [Homo sapiens],3CTT_A Crystal complex of N-terminal Human Maltase-Glucoamylase with Casuarine [Homo sapiens]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
0.0 43 912 26 843
Probable alpha/beta-glucosidase agdC OS=Aspergillus clavatus (strain ATCC 1007 / CBS 513.65 / DSM 816 / NCTC 3887 / NRRL 1 / QM 1276 / 107) OX=344612 GN=agdC PE=3 SV=1
0.0 39 948 22 876
Probable alpha/beta-glucosidase agdC OS=Aspergillus oryzae (strain ATCC 42149 / RIB 40) OX=510516 GN=agdC PE=3 SV=1
0.0 43 912 27 853
Probable alpha/beta-glucosidase agdC OS=Aspergillus terreus (strain NIH 2624 / FGSC A1156) OX=341663 GN=agdC PE=3 SV=1
0.0 42 948 25 880
Probable alpha/beta-glucosidase agdC OS=Neosartorya fumigata (strain ATCC MYA-4609 / Af293 / CBS 101355 / FGSC A1100) OX=330879 GN=agdC PE=3 SV=1
0.0 40 912 25 874
Alpha/beta-glucosidase agdC OS=Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) OX=227321 GN=agdC PE=2 SV=2

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI CS Position
0.000370 0.999584 CS pos: 23-24. Pr: 0.4310

TMHMM  Annotations      help

There is no transmembrane helices in ASPVEDRAFT_72328-t33_1-p1.