Species | Aspergillus aculeatus | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Ascomycota; Eurotiomycetes; ; Aspergillaceae; Aspergillus; Aspergillus aculeatus | |||||||||||
CAZyme ID | ASPACDRAFT_54078-t33_1-p1 | |||||||||||
CAZy Family | GH72 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location |
EC | 3.2.1.26:2 |
---|
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH32 | 31 | 373 | 2.5e-60 | 0.9590443686006825 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
350133 | GH32_XdINV-like | 8.96e-158 | 37 | 375 | 1 | 337 | glycoside hydrolase family 32 protein such as Xanthophyllomyces dendrorhous beta-fructofuranosidase (Inv;Xd-INV;XdINV). This subfamily of glycosyl hydrolase family GH32 includes fructan:fructan 1-fructosyltransferase (FT, EC 2.4.1.100) and beta-fructofuranosidase (invertase or Inv, EC 3.2.1.26), among others. These enzymes cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. Xanthophyllomyces dendrorhous beta-fructofuranosidase (XdINV) also catalyzes the synthesis of fructooligosaccharides (FOS, a beneficial prebiotic), producing neo-FOS, making it an interesting biotechnology target. Structural studies show plasticity of its active site, having a flexible loop that is essential in binding sucrose and beta(2-1)-linked oligosaccharide, making it a valuable biocatalyst to produce novel bioconjugates. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. |
350110 | GH32_FFase | 7.49e-54 | 37 | 371 | 1 | 279 | Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. |
214757 | Glyco_32 | 1.61e-47 | 31 | 548 | 1 | 435 | Glycosyl hydrolases family 32. |
224536 | SacC | 5.89e-42 | 17 | 571 | 17 | 470 | Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism]. |
395193 | Glyco_hydro_32N | 2.76e-41 | 31 | 369 | 1 | 293 | Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
1.17e-257 | 16 | 600 | 4 | 594 | |
1.17e-257 | 16 | 600 | 4 | 594 | |
1.47e-253 | 16 | 600 | 4 | 594 | |
1.47e-253 | 16 | 600 | 4 | 594 | |
2.02e-239 | 16 | 603 | 37 | 619 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
1.71e-51 | 24 | 557 | 24 | 565 | Aspergillus kawachii beta-fructofuranosidase complexed with glycerol [Aspergillus luchuensis IFO 4308],5XH9_A Aspergillus kawachii beta-fructofuranosidase [Aspergillus luchuensis IFO 4308],5XHA_A Aspergillus kawachii beta-fructofuranosidase complexed with fructose [Aspergillus luchuensis IFO 4308] |
|
1.19e-49 | 26 | 555 | 26 | 594 | Crystal structure of fructosyltransferase (wild-type) from A. japonicus [Aspergillus japonicus],3LFI_A Crystal structure of fructosyltransferase (wild-type) from A. japonicus in complex with glucose [Aspergillus japonicus],3LFI_B Crystal structure of fructosyltransferase (wild-type) from A. japonicus in complex with glucose [Aspergillus japonicus] |
|
1.49e-48 | 26 | 555 | 26 | 594 | Crystal Structure of A. japonicus CB05 [Aspergillus japonicus],3LDR_A Crystal structure of fructosyltransferase (D191A) from A. japonicus in complex with 1-Kestose [Aspergillus japonicus],3LEM_A Crystal structure of fructosyltransferase (D191A) from A. japonicus in complex with Nystose [Aspergillus japonicus],3LIG_A Crystal structure of fructosyltransferase (D191A) from A. japonicus [Aspergillus japonicus],3LIH_A Crystal structure of fructosyltransferase (D191A) from A. japonicus in complex with raffinose [Aspergillus japonicus] |
|
1.43e-37 | 26 | 601 | 65 | 635 | Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],6S82_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma] |
|
1.43e-37 | 26 | 601 | 65 | 635 | Chain A, Beta-fructofuranosidase [Phaffia rhodozyma],5ANN_B Chain B, Beta-fructofuranosidase [Phaffia rhodozyma] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
1.59e-24 | 27 | 371 | 55 | 371 | Beta-fructofuranosidase, insoluble isoenzyme 2 OS=Oryza sativa subsp. japonica OX=39947 GN=CIN2 PE=1 SV=1 |
|
1.59e-24 | 27 | 371 | 55 | 371 | Beta-fructofuranosidase, insoluble isoenzyme 2 OS=Oryza sativa subsp. indica OX=39946 GN=CIN2 PE=2 SV=2 |
|
3.61e-23 | 27 | 371 | 54 | 364 | Beta-fructofuranosidase, cell wall isozyme OS=Zea mays OX=4577 PE=2 SV=1 |
|
4.62e-22 | 24 | 371 | 49 | 365 | Beta-fructofuranosidase, insoluble isoenzyme CWINV1 OS=Arabidopsis thaliana OX=3702 GN=CWINV1 PE=1 SV=1 |
|
8.23e-22 | 27 | 369 | 47 | 362 | Beta-fructofuranosidase, insoluble isoenzyme 3 OS=Oryza sativa subsp. japonica OX=39947 GN=CIN3 PE=2 SV=1 |
Other | SP_Sec_SPI | CS Position |
---|---|---|
0.999788 | 0.000257 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.