logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: AMAG_09783-t26_1-p1

You are here: Home > Sequence: AMAG_09783-t26_1-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Allomyces macrogynus
Lineage Blastocladiomycota; Blastocladiomycetes; ; Blastocladiaceae; Allomyces; Allomyces macrogynus
CAZyme ID AMAG_09783-t26_1-p1
CAZy Family GH63
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
1732 GG745348|CGC3 193276.95 8.2180
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_AmacrogynusATCC38327 19333 578462 535 18798
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.16:11

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 1158 1671 1.3e-235 0.9924098671726755

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
367353 Chitin_synth_2 0.0 1158 1671 4 527
Chitin synthase. Members of this family are fungal chitin synthase EC:2.4.1.16 enzymes. They catalyze chitin synthesis as follows: UDP-N-acetyl-D-glucosamine + {(1,4)-(N-acetyl-beta-D-glucosaminyl)}(N) <=> UDP + {(1,4)-(N-acetyl-beta-D-glucosaminyl)}(N+1).
276845 MYSc_Myo17 7.31e-141 77 738 14 646
class XVII myosin, motor domain. This fungal myosin which is also known as chitin synthase uses its motor domain to tether its vesicular cargo to peripheral actin. It works in opposition to dynein, contributing to the retention of Mcs1 vesicles at the site of cell growth and increasing vesicle fusion necessary for polarized growth. Class 17 myosins consist of a N-terminal myosin motor domain with Cyt-b5, chitin synthase 2, and a DEK_C domains at it C-terminus. The chitin synthase region contains several transmembrane domains by which myosin 17 is thought to bind secretory vesicles. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
214580 MYSc 3.71e-99 77 742 30 677
Myosin. Large ATPases. ATPase; molecular motor. Muscle contraction consists of a cyclical interaction between myosin and actin. The core of the myosin structure is similar in fold to that of kinesin.
276950 MYSc 5.21e-97 77 730 11 633
Myosin motor domain superfamily. Myosin motor domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
395017 Myosin_head 3.47e-77 77 458 23 373
Myosin head (motor domain).

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
0.0 151 1674 83 1714
0.0 68 1673 24 1690
0.0 81 1680 41 1750
0.0 81 1680 41 1750
0.0 77 1680 30 1755

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4.18e-50 151 516 151 513
Insights into the Importance of Hydrogen Bonding in the Gamma-Phosphate Binding Pocket of Myosin: Structural and Functional Studies of Ser236 [Dictyostelium discoideum],3MYK_X Insights into the Importance of Hydrogen Bonding in the Gamma-Phosphate Binding Pocket of Myosin: Structural and Functional Studies of Ser236 [Dictyostelium discoideum],3MYL_X Insights into the Importance of Hydrogen Bonding in the Gamma-Phosphate Binding Pocket of Myosin: Structural and Functional Studies of Ser236 [Dictyostelium discoideum]
6.12e-50 151 516 151 513
Dictyostelium discoideum Myosin II motor domain S456E with bound MgADP-BeFx [Dictyostelium discoideum]
7.41e-50 151 516 150 512
Crystal structure of myosin-2 dictyostelium discoideum motor domain S456Y mutant in complex with adp-orthovanadate [Dictyostelium discoideum]
7.46e-50 151 516 151 513
X-Ray Structures Of The Mgadp, Mgatpgammas, And Mgamppnp Complexes Of The Dictyostelium Discoideum Myosin Motor Domain [Dictyostelium discoideum]
9.53e-50 151 516 150 512
Structural basis for the allosteric interference of myosin function by mutants G680A and G680V of Dictyostelium myosin-2 [Dictyostelium discoideum],2Y8I_X Structural basis for the allosteric interference of myosin function by mutants G680A and G680V of Dictyostelium myosin-2 [Dictyostelium discoideum]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
0.0 149 1674 78 1752
Chitin synthase 8 OS=Ustilago maydis (strain 521 / FGSC 9021) OX=237631 GN=CHS8 PE=3 SV=1
0.0 153 1676 96 1742
Chitin synthase 5 OS=Cryptococcus neoformans var. grubii serotype A (strain H99 / ATCC 208821 / CBS 10515 / FGSC 9487) OX=235443 GN=CHS5 PE=2 SV=1
1.52e-288 845 1705 57 927
Chitin synthase 6 OS=Ustilago maydis (strain 521 / FGSC 9021) OX=237631 GN=CHS6 PE=3 SV=2
6.47e-272 851 1684 155 1004
Chitin synthase 4 OS=Cryptococcus neoformans var. grubii serotype A (strain H99 / ATCC 208821 / CBS 10515 / FGSC 9487) OX=235443 GN=CHS4 PE=2 SV=2
7.26e-145 1172 1701 679 1201
Chitin synthase 4 OS=Magnaporthe oryzae (strain 70-15 / ATCC MYA-4617 / FGSC 8958) OX=242507 GN=CHS4 PE=3 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
0.998490 0.001557

TMHMM  Annotations      download full data without filtering help

Start End
899 921
1144 1166
1534 1556
1569 1591
1601 1623