logo
sublogo
You are browsing environment: FUNGIDB
help

CAZyme Information: AMAG_07755-t26_1-p1

You are here: Home > Sequence: AMAG_07755-t26_1-p1

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Allomyces macrogynus
Lineage Blastocladiomycota; Blastocladiomycetes; ; Blastocladiaceae; Allomyces; Allomyces macrogynus
CAZyme ID AMAG_07755-t26_1-p1
CAZy Family GH26
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
1858 GG745340|CGC3 205783.41 6.8628
Genome Property
Genome Version/Assembly ID Genes Strain NCBI Taxon ID Non Protein Coding Genes Protein Coding Genes
FungiDB-61_AmacrogynusATCC38327 19333 578462 535 18798
Gene Location

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.16:11

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 1193 1704 5.4e-236 0.9886148007590133

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
367353 Chitin_synth_2 0.0 1192 1705 4 527
Chitin synthase. Members of this family are fungal chitin synthase EC:2.4.1.16 enzymes. They catalyze chitin synthesis as follows: UDP-N-acetyl-D-glucosamine + {(1,4)-(N-acetyl-beta-D-glucosaminyl)}(N) <=> UDP + {(1,4)-(N-acetyl-beta-D-glucosaminyl)}(N+1).
276845 MYSc_Myo17 1.35e-144 83 769 17 647
class XVII myosin, motor domain. This fungal myosin which is also known as chitin synthase uses its motor domain to tether its vesicular cargo to peripheral actin. It works in opposition to dynein, contributing to the retention of Mcs1 vesicles at the site of cell growth and increasing vesicle fusion necessary for polarized growth. Class 17 myosins consist of a N-terminal myosin motor domain with Cyt-b5, chitin synthase 2, and a DEK_C domains at it C-terminus. The chitin synthase region contains several transmembrane domains by which myosin 17 is thought to bind secretory vesicles. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
214580 MYSc 9.47e-103 80 772 30 677
Myosin. Large ATPases. ATPase; molecular motor. Muscle contraction consists of a cyclical interaction between myosin and actin. The core of the myosin structure is similar in fold to that of kinesin.
276950 MYSc 4.51e-97 80 760 11 633
Myosin motor domain superfamily. Myosin motor domain. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.
276829 MYSc_Myo1 6.58e-77 149 459 52 359
class I myosin, motor domain. Myosin I generates movement at the leading edge in cell motility, and class I myosins have been implicated in phagocytosis and vesicle transport. Myosin I, an unconventional myosin, does not form dimers. The catalytic (head) domain has ATPase activity and belongs to the larger group of P-loop NTPases. There are 5 myosin subclasses with subclasses c/h, d/g, and a/b have an IQ domain and a TH1 domain. Myosins are actin-dependent molecular motors that play important roles in muscle contraction, cell motility, and organelle transport. The head domain is a molecular motor, which utilizes ATP hydrolysis to generate directed movement toward the plus end along actin filaments. A cyclical interaction between myosin and actin provides the driving force. Rates of ATP hydrolysis and consequently the speed of movement along actin filaments vary widely, from about 0.04 micrometer per second for myosin I to 4.5 micrometer per second for myosin II in skeletal muscle. Myosin II moves in discrete steps about 5-10 nm long and generates 1-5 piconewtons of force. Upon ATP binding, the myosin head dissociates from an actin filament. ATP hydrolysis causes the head to pivot and associate with a new actin subunit. The release of Pi causes the head to pivot and move the filament (power stroke). Release of ADP completes the cycle. CyMoBase classifications were used to confirm and identify the myosins in this hierarchy.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
0.0 69 1850 22 1892
0.0 71 1706 24 1689
0.0 72 1849 21 1903
0.0 69 1845 26 1903
0.0 85 1833 35 1885

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1.05e-52 149 520 151 497
X-Ray Structures Of The Mgadp, Mgatpgammas, And Mgamppnp Complexes Of The Dictyostelium Discoideum Myosin Motor Domain [Dictyostelium discoideum]
1.05e-52 149 511 151 488
X-Ray Crystal Structure Of The Mg (Dot) 2'(3')-O-(N- Methylanthraniloyl) Nucleotide Bound To Dictyostelium Discoideum Myosin Motor Domain [Dictyostelium discoideum]
1.40e-52 149 520 151 497
X-Ray Structures Of The Mgadp, Mgatpgammas, And Mgamppnp Complexes Of The Dictyostelium Discoideum Myosin Motor Domain [Dictyostelium discoideum]
1.87e-52 149 520 151 497
Truncated Head Of Myosin From Dictyostelium Discoideum Complexed With Mgadp-Bef3 [Dictyostelium discoideum],1MND_A Truncated Head Of Myosin From Dictyostelium Discoideum Complexed With Mgadp-Alf4 [Dictyostelium discoideum],1MNE_A Truncated Head Of Myosin From Dictyostelium Discoideum Complexed With Mg-Pyrophosphate [Dictyostelium discoideum],1VOM_A Complex Between Dictyostelium Myosin And Mgadp And Vanadate At 1.9a Resolution [Dictyostelium discoideum]
2.50e-52 149 520 151 497
Insights into the Importance of Hydrogen Bonding in the Gamma-Phosphate Binding Pocket of Myosin: Structural and Functional Studies of Ser236 [Dictyostelium discoideum],3MYK_X Insights into the Importance of Hydrogen Bonding in the Gamma-Phosphate Binding Pocket of Myosin: Structural and Functional Studies of Ser236 [Dictyostelium discoideum],3MYL_X Insights into the Importance of Hydrogen Bonding in the Gamma-Phosphate Binding Pocket of Myosin: Structural and Functional Studies of Ser236 [Dictyostelium discoideum]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
0.0 86 1709 35 1753
Chitin synthase 8 OS=Ustilago maydis (strain 521 / FGSC 9021) OX=237631 GN=CHS8 PE=3 SV=1
0.0 151 1849 96 1929
Chitin synthase 5 OS=Cryptococcus neoformans var. grubii serotype A (strain H99 / ATCC 208821 / CBS 10515 / FGSC 9487) OX=235443 GN=CHS5 PE=2 SV=1
1.70e-281 881 1710 61 898
Chitin synthase 6 OS=Ustilago maydis (strain 521 / FGSC 9021) OX=237631 GN=CHS6 PE=3 SV=2
2.02e-271 858 1731 123 1018
Chitin synthase 4 OS=Cryptococcus neoformans var. grubii serotype A (strain H99 / ATCC 208821 / CBS 10515 / FGSC 9487) OX=235443 GN=CHS4 PE=2 SV=2
2.01e-146 893 1703 83 951
Chitin synthase 7 OS=Ustilago maydis (strain 521 / FGSC 9021) OX=237631 GN=CHS7 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI CS Position
1.000076 0.000001

TMHMM  Annotations      download full data without filtering help

Start End
930 952
1178 1200
1549 1571
1578 1600
1605 1627
1634 1656