logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004854_02272

You are here: Home > Sequence: MGYG000004854_02272

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species
Lineage Bacteria; Firmicutes_A; Clostridia; Oscillospirales; Ruminococcaceae; Ruminococcus;
CAZyme ID MGYG000004854_02272
CAZy Family CBM35
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
1024 MGYG000004854_15|CGC1 110378.09 4.1162
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004854 2725669 MAG Spain Europe
Gene Location Start: 23832;  End: 26906  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004854_02272.

CAZyme Signature Domains help

Family Start End Evalue family coverage
PL11 433 1021 6e-238 0.9554455445544554
CBM35 125 246 3.4e-28 0.9915966386554622
CBM35 299 416 3.1e-20 0.957983193277311

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd10318 RGL11 0.0 435 1006 1 564
Rhamnogalacturonan lyase of the polysaccharide lyase family 11. The rhamnogalacturonan lyase of the polysaccharide lyase family 11 (RGL11) cleaves glycoside bonds in polygalacturonan as well as RG (rhamnogalacturonan) type-I through a beta-elimination reaction. Functionally characterized members of this family, YesW and YesX from Bacillus subtilis, cleave glycoside bonds between rhamnose and galacturonic acid residues in the RG-I region of plant cell wall pectin. YesW and YesX work synergistically, with YesW cleaving the glycoside bond of the RG chain endolytically, and YesX converting the resultant oligosaccharides through an exotype reaction. This domain is sometimes found in architectures with non-catalytic carbohydrate-binding modules (CBMs). There are two types of RG lyases, which both cleave the alpha-1,4 bonds of the RG-I main chain through a beta-elimination reaction, but belong to two structurally unrelated polysaccharide lyase (PL) families, 4 and 11.
cd04082 CBM35_pectate_lyase-like 1.79e-50 294 416 2 124
Carbohydrate Binding Module family 35 (CBM35), pectate lyase-like; appended mainly to enzymes that bind mannan (Man), xylan, glucuronic acid (GlcA) and possibly glucans. This family includes carbohydrate binding module family 35 (CBM35) domains that are non-catalytic carbohydrate binding domains that are appended mainly to enzymes that bind mannan (Man), xylan, glucuronic acid (GlcA) and possibly glucans. Included in this family are CBM35s of pectate lyases, including pectate lyase 10A from Cellvibrio japonicas, these enzymes release delta-4,5-anhydrogalaturonic acid (delta4,5-GalA) from pectin, thus identifying a signature molecule for plant cell wall degradation. CBM35s are unique in that they display conserved specificity through extensive sequence similarity but divergent function through their appended catalytic modules. They are known to bind alpha-D-galactose (Gal), mannan (Man), xylan, glucuronic acid (GlcA), a beta-polymer of mannose, and possibly glucans, forming four subfamilies based on general ligand specificities (galacto, urono, manno, and gluco configurations). In contrast to most CBMs that are generally rigid proteins, CBM35 undergoes significant conformational change upon ligand binding. Some CBM35s bind their ligands in a calcium-dependent manner, especially those binding uronic acids.
cd04082 CBM35_pectate_lyase-like 2.32e-39 124 246 2 124
Carbohydrate Binding Module family 35 (CBM35), pectate lyase-like; appended mainly to enzymes that bind mannan (Man), xylan, glucuronic acid (GlcA) and possibly glucans. This family includes carbohydrate binding module family 35 (CBM35) domains that are non-catalytic carbohydrate binding domains that are appended mainly to enzymes that bind mannan (Man), xylan, glucuronic acid (GlcA) and possibly glucans. Included in this family are CBM35s of pectate lyases, including pectate lyase 10A from Cellvibrio japonicas, these enzymes release delta-4,5-anhydrogalaturonic acid (delta4,5-GalA) from pectin, thus identifying a signature molecule for plant cell wall degradation. CBM35s are unique in that they display conserved specificity through extensive sequence similarity but divergent function through their appended catalytic modules. They are known to bind alpha-D-galactose (Gal), mannan (Man), xylan, glucuronic acid (GlcA), a beta-polymer of mannose, and possibly glucans, forming four subfamilies based on general ligand specificities (galacto, urono, manno, and gluco configurations). In contrast to most CBMs that are generally rigid proteins, CBM35 undergoes significant conformational change upon ligand binding. Some CBM35s bind their ligands in a calcium-dependent manner, especially those binding uronic acids.
pfam18370 RGI_lyase 6.74e-24 433 509 1 75
Rhamnogalacturonan I lyases beta-sheet domain. This is the beta-sheet domain found in rhamnogalacturonan (RG) lyases, which are responsible for an initial cleavage of the RG type I (RG-I) region of plant cell wall pectin. Polysaccharide lyase family 11 carrying this domain, such as YesW (EC:4.2.2.23) and YesX (EC:4.2.2.24), cleave glycoside bonds between rhamnose and galacturonic acid residues in RG-I through a beta-elimination reaction. Other family members carrying this domain are hemagglutinin A, lysine gingipain (Kgp) and Chitinase C (EC:3.2.1.14).
cd04083 CBM35_Lmo2446-like 4.28e-20 294 416 2 125
Carbohydrate Binding Module 35 (CBM35) domains similar to Lmo2446. This family includes carbohydrate binding module 35 (CBM35) domains that are appended to several carbohydrate binding enzymes. Some CBM35 domains belonging to this family are appended to glycoside hydrolase (GH) family domains, including glycoside hydrolase family 31 (GH31), for example the CBM35 domain of Lmo2446, an uncharacterized protein from Listeria monocytogenes EGD-e. These CBM35s are non-catalytic carbohydrate binding domains that facilitate the strong binding of the GH catalytic modules with their dedicated, insoluble substrates. GH31 has a wide range of hydrolytic activities such as alpha-glucosidase, alpha-xylosidase, 6-alpha-glucosyltransferase, or alpha-1,4-glucan lyase, cleaving a terminal carbohydrate moiety from a substrate that may be a starch or a glycoprotein. Most characterized GH31 enzymes are alpha-glucosidases.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
CBL17717.1 0.0 295 1024 120 850
ADU75030.1 7.30e-231 294 1021 110 817
ALX08998.1 7.30e-231 294 1021 110 817
ANV76748.1 7.30e-231 294 1021 110 817
ABN51485.1 1.46e-230 294 1021 110 817

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4CAG_A 5.25e-203 428 1021 4 588
Bacilluslicheniformis Rhamnogalacturonan Lyase PL11 [Bacillus licheniformis]
2Z8R_A 4.34e-194 433 1021 3 581
Crystalstructure of rhamnogalacturonan lyase YesW at 1.40 A resolution [Bacillus subtilis],2Z8R_B Crystal structure of rhamnogalacturonan lyase YesW at 1.40 A resolution [Bacillus subtilis],2Z8S_A Crystal structure of rhamnogalacturonan lyase YesW complexed with digalacturonic acid [Bacillus subtilis],2Z8S_B Crystal structure of rhamnogalacturonan lyase YesW complexed with digalacturonic acid [Bacillus subtilis],2ZUX_A Crystal structure of rhamnogalacturonan lyase YesW complexed with rhamnose [Bacillus subtilis],2ZUX_B Crystal structure of rhamnogalacturonan lyase YesW complexed with rhamnose [Bacillus subtilis]
2ZUY_A 2.04e-191 429 1023 3 604
Crystalstructure of exotype rhamnogalacturonan lyase YesX [Bacillus subtilis]
2W47_A 1.85e-30 295 416 7 128
ChainA, Lipolytic Enzyme, G-d-s-l [Acetivibrio thermocellus]
2W1W_A 1.96e-30 295 416 7 128
ChainA, LIPOLYTIC ENZYME, G-D-S-L [Acetivibrio thermocellus],2W1W_B Chain B, LIPOLYTIC ENZYME, G-D-S-L [Acetivibrio thermocellus]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
O31526 6.35e-193 433 1021 40 618
Rhamnogalacturonan endolyase YesW OS=Bacillus subtilis (strain 168) OX=224308 GN=yesW PE=1 SV=1
O31527 8.51e-191 429 1023 3 604
Rhamnogalacturonan exolyase YesX OS=Bacillus subtilis (strain 168) OX=224308 GN=yesX PE=1 SV=1
Q56F26 1.95e-19 295 416 911 1032
Exo-beta-D-glucosaminidase OS=Amycolatopsis orientalis OX=31958 GN=csxA PE=1 SV=2
P23030 9.75e-16 303 416 174 288
Endo-1,4-beta-xylanase B OS=Cellvibrio japonicus (strain Ueda107) OX=498211 GN=xynB PE=1 SV=2
P23031 1.02e-15 303 416 174 288
Alpha-L-arabinofuranosidase C OS=Cellvibrio japonicus (strain Ueda107) OX=498211 GN=xynC PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.000724 0.998225 0.000252 0.000315 0.000250 0.000206

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004854_02272.