logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004739_01482

You are here: Home > Sequence: MGYG000004739_01482

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Actinomyces sp000220835
Lineage Bacteria; Actinobacteriota; Actinomycetia; Actinomycetales; Actinomycetaceae; Actinomyces; Actinomyces sp000220835
CAZyme ID MGYG000004739_01482
CAZy Family GH32
CAZyme Description Levanbiose-producing levanase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
552 MGYG000004739_55|CGC1 61171.81 4.1086
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004739 2692200 MAG China Asia
Gene Location Start: 5299;  End: 6957  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 4.2.2.16

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 74 384 6.3e-56 0.9692832764505119

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
smart00640 Glyco_32 9.85e-84 74 513 1 437
Glycosyl hydrolases family 32.
cd18622 GH32_Inu-like 1.29e-83 79 381 1 289
glycoside hydrolase family 32 protein such as Aspergillus ficuum endo-inulinase (Inu2). This subfamily of glycosyl hydrolase family GH32 includes endo-inulinase (inu2, EC 3.2.1.7), exo-inulinase (Inu1, EC 3.2.1.80), invertase (EC 3.2.1.26), and levan fructotransferase (LftA, EC 4.2.2.16), among others. These enzymes cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
COG1621 SacC 9.95e-82 69 546 28 482
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].
pfam00251 Glyco_hydro_32N 4.95e-50 74 381 1 297
Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure.
cd08996 GH32_FFase 3.96e-36 88 381 9 281
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
ALD00642.1 5.78e-249 67 547 27 507
AAX01527.1 2.00e-210 8 547 3 515
AAF73829.1 2.15e-210 8 547 3 515
AAX01526.1 2.15e-210 8 547 3 515
AOY72875.1 1.08e-207 11 545 6 511

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4FFF_A 5.70e-209 71 547 2 476
CrystalStructure of Levan Fructotransferase from Arthrobacter ureafaciens [Paenarthrobacter ureafaciens],4FFF_B Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens [Paenarthrobacter ureafaciens],4FFF_C Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens [Paenarthrobacter ureafaciens],4FFF_D Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens [Paenarthrobacter ureafaciens]
4FFG_A 6.12e-209 71 547 2 476
CrystalStructure of Levan Fructotransferase from Arthrobacter ureafaciens in complex with DFA-IV [Paenarthrobacter ureafaciens],4FFG_B Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens in complex with DFA-IV [Paenarthrobacter ureafaciens],4FFG_C Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens in complex with DFA-IV [Paenarthrobacter ureafaciens],4FFG_D Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens in complex with DFA-IV [Paenarthrobacter ureafaciens]
4FFH_A 3.51e-208 71 547 2 476
CrystalStructure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with sucrose [Paenarthrobacter ureafaciens],4FFH_B Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with sucrose [Paenarthrobacter ureafaciens],4FFH_C Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with sucrose [Paenarthrobacter ureafaciens],4FFH_D Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with sucrose [Paenarthrobacter ureafaciens],4FFI_A Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with levanbiose [Paenarthrobacter ureafaciens],4FFI_B Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with levanbiose [Paenarthrobacter ureafaciens],4FFI_C Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with levanbiose [Paenarthrobacter ureafaciens],4FFI_D Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with levanbiose [Paenarthrobacter ureafaciens]
3RWK_X 9.31e-33 70 552 29 516
Firstcrystal structure of an endo-inulinase, from Aspergillus ficuum: structural analysis and comparison with other GH32 enzymes. [Aspergillus ficuum],3SC7_X First crystal structure of an endo-inulinase, from Aspergillus ficuum: structural analysis and comparison with other GH32 enzymes. [Aspergillus ficuum]
6J0T_A 1.32e-24 70 523 39 525
Thecrystal structure of exoinulinase INU1 [Kluyveromyces marxianus DMKU3-1042],6J0T_B The crystal structure of exoinulinase INU1 [Kluyveromyces marxianus DMKU3-1042]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
O07003 1.30e-105 70 550 44 512
Levanbiose-producing levanase OS=Bacillus subtilis (strain 168) OX=224308 GN=levB PE=1 SV=1
P94469 9.41e-83 84 489 1 394
Levanbiose-producing levanase (Fragment) OS=Geobacillus stearothermophilus OX=1422 GN=levB PE=1 SV=2
P05656 4.85e-47 67 545 32 505
Levanase OS=Bacillus subtilis (strain 168) OX=224308 GN=sacC PE=1 SV=1
O31411 9.14e-37 66 547 394 880
Levanase (Fragment) OS=Bacillus sp. (strain L7) OX=62626 PE=1 SV=2
O74641 2.04e-32 70 552 29 516
Extracellular endo-inulinase inuA OS=Aspergillus niger OX=5061 GN=inuA PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as TAT

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.017454 0.008225 0.004154 0.676113 0.293920 0.000113

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004739_01482.