logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004211_00255

You are here: Home > Sequence: MGYG000004211_00255

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species
Lineage Bacteria; Firmicutes; Bacilli; RF39; UBA660; UMGS1648;
CAZyme ID MGYG000004211_00255
CAZy Family GT4
CAZyme Description Glycosyltransferase Gtf1
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
380 MGYG000004211_1|CGC1 43744.78 9.0814
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004211 1066903 MAG United Kingdom Europe
Gene Location Start: 250797;  End: 251939  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004211_00255.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 200 353 1.3e-40 0.95

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03820 GT4_AmsD-like 1.74e-88 3 373 1 351
amylovoran biosynthesis glycosyltransferase AmsD and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmSD in Erwinia amylovora has been shown to be involved in the biosynthesis of amylovoran, the acidic exopolysaccharide acting as a virulence factor. This enzyme may be responsible for the formation of galactose alpha-1,6 linkages in amylovoran.
cd03801 GT4_PimA-like 1.20e-49 3 376 1 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03811 GT4_GT28_WabH-like 7.58e-49 3 351 1 335
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.
pfam00534 Glycos_transf_1 6.71e-43 200 357 1 157
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.
cd04949 GT4_GtfA-like 1.56e-39 77 371 21 328
accessory Sec system glycosyltransferase GtfA and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases and is named after gtfA in Streptococcus gordonii, where it plays a role in the O-linked glycosylation of GspB, a cell surface glycoprotein involved in platelet binding. In general glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found in bacteria.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QYE97616.1 4.35e-110 1 376 1 377
CED94666.1 4.95e-110 1 376 1 377
AUN15515.1 7.03e-109 1 376 1 377
QPS13511.1 1.42e-80 2 359 289 648
QMW73232.1 1.42e-80 2 359 289 648

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7EC2_A 1.02e-23 165 375 284 490
ChainA, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC2_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300]
7EC3_A 3.21e-21 145 371 263 490
ChainA, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC3_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFL_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFL_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300]
7EC1_A 3.21e-21 145 371 263 490
ChainA, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC1_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC4_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC4_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC6_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC6_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFK_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFK_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFM_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFM_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFN_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFN_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300]
7EC7_A 7.83e-21 161 371 278 489
ChainA, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC7_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFO_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFO_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300]
5N7Z_A 9.91e-16 101 378 80 347
glycosyltransferasein LPS biosynthesis [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2],6Y6G_A Chain A, Lipopolysaccharide 1,6-galactosyltransferase [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
O05083 4.33e-34 1 375 1 353
Uncharacterized glycosyltransferase HI_1698 OS=Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd) OX=71421 GN=HI_1698 PE=3 SV=1
Q9L1I4 4.57e-33 14 374 14 380
Exopolysaccharide phosphotransferase SCO2592 OS=Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) OX=100226 GN=SCO2592 PE=3 SV=1
P13484 1.13e-23 137 371 276 515
Poly(glycerol-phosphate) alpha-glucosyltransferase OS=Bacillus subtilis (strain 168) OX=224308 GN=tagE PE=1 SV=1
Q58459 1.65e-15 78 377 63 404
Uncharacterized glycosyltransferase MJ1059 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1059 PE=3 SV=1
Q9R9N1 1.89e-15 205 378 172 339
Lipopolysaccharide core biosynthesis glycosyltransferase LpsE OS=Rhizobium meliloti (strain 1021) OX=266834 GN=lpsE PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000077 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004211_00255.