logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003742_01039

You are here: Home > Sequence: MGYG000003742_01039

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Prevotella buccalis
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Bacteroidaceae; Prevotella; Prevotella buccalis
CAZyme ID MGYG000003742_01039
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
472 MGYG000003742_23|CGC1 54456.5 6.1611
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003742 2540681 MAG Canada North America
Gene Location Start: 29375;  End: 30793  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003742_01039.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 230 357 1.6e-21 0.7352941176470589

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd00761 Glyco_tranf_GTA_type 1.75e-20 231 349 1 117
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
pfam00535 Glycos_transf_2 5.39e-20 230 388 1 156
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd06433 GT_2_WfgS_like 2.36e-18 230 437 1 200
WfgS and WfeV are involved in O-antigen biosynthesis. Escherichia coli WfgS and Shigella dysenteriae WfeV are glycosyltransferase 2 family enzymes involved in O-antigen biosynthesis. GT-2 enzymes have GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
COG0463 WcaA 3.57e-16 230 435 6 201
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd06423 CESA_like 5.37e-12 231 358 1 127
CESA_like is the cellulose synthase superfamily. The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of Glucan.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QUB47643.1 2.83e-249 1 470 1 470
ALO47901.1 6.03e-236 1 472 1 472
QUT33541.1 3.22e-219 1 470 1 486
QUU00721.1 4.56e-219 1 470 1 486
QMI79528.1 4.56e-219 1 470 1 486

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q9LM93 4.94e-08 226 346 12 132
Dolichol-phosphate mannosyltransferase subunit 1 OS=Arabidopsis thaliana OX=3702 GN=DPMS1 PE=1 SV=1
Q4UM29 6.79e-07 228 329 294 392
Uncharacterized glycosyltransferase RF_0543 OS=Rickettsia felis (strain ATCC VR-1525 / URRWXCal2) OX=315456 GN=RF_0543 PE=3 SV=1
Q92IF9 2.07e-06 230 329 296 392
Uncharacterized glycosyltransferase RC0461 OS=Rickettsia conorii (strain ATCC VR-613 / Malish 7) OX=272944 GN=RC0461 PE=3 SV=1
O32268 2.42e-06 222 349 1 125
Putative teichuronic acid biosynthesis glycosyltransferase TuaG OS=Bacillus subtilis (strain 168) OX=224308 GN=tuaG PE=2 SV=1
Q1RIM7 3.83e-06 228 451 292 518
Uncharacterized glycosyltransferase RBE_0706 OS=Rickettsia bellii (strain RML369-C) OX=336407 GN=RBE_0706 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000047 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003742_01039.