logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003425_01343

You are here: Home > Sequence: MGYG000003425_01343

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species CAG-127 sp900766925
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; CAG-127; CAG-127 sp900766925
CAZyme ID MGYG000003425_01343
CAZy Family GT2
CAZyme Description UDP-Gal:alpha-D-GlcNAc-diphosphoundecaprenol beta-1,3-galactosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
265 30623.35 7.3196
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003425 5056923 MAG Fiji Oceania
Gene Location Start: 4264;  End: 5061  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003425_01343.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 12 129 2.3e-21 0.6882352941176471

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd04195 GT2_AmsE_like 4.00e-71 1 200 4 201
GT2_AmsE_like is involved in exopolysaccharide amylovora biosynthesis. AmsE is a glycosyltransferase involved in exopolysaccharide amylovora biosynthesis in Erwinia amylovora. Amylovara is one of the three exopolysaccharide produced by E. amylovora. Amylovara-deficient mutants are non-pathogenic. It is a subfamily of Glycosyltransferase Family GT2, which includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds.
pfam00535 Glycos_transf_2 1.37e-19 13 131 14 131
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd00761 Glyco_tranf_GTA_type 2.33e-19 8 190 7 155
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
COG1215 BcsA 6.34e-14 5 251 63 324
Glycosyltransferase, catalytic subunit of cellulose synthase and poly-beta-1,6-N-acetylglucosamine synthase [Cell motility].
cd06433 GT_2_WfgS_like 6.06e-13 8 202 8 196
WfgS and WfeV are involved in O-antigen biosynthesis. Escherichia coli WfgS and Shigella dysenteriae WfeV are glycosyltransferase 2 family enzymes involved in O-antigen biosynthesis. GT-2 enzymes have GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AOP03537.1 6.58e-107 1 264 10 272
ADV44095.1 3.04e-90 1 264 8 272
QQA02130.1 5.98e-90 4 264 18 277
ALU14403.1 6.24e-87 1 264 22 289
QCT70188.1 1.67e-82 1 265 10 272

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q48215 7.59e-44 1 265 7 267
Uncharacterized glycosyltransferase HI_1695 OS=Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd) OX=71421 GN=HI_1695 PE=3 SV=2
Q03084 2.08e-38 1 265 12 273
UDP-Gal:alpha-D-GlcNAc-diphosphoundecaprenol beta-1,3-galactosyltransferase OS=Escherichia coli OX=562 GN=wbbD PE=1 SV=1
Q46635 5.45e-36 1 260 6 261
Amylovoran biosynthesis glycosyltransferase AmsE OS=Erwinia amylovora OX=552 GN=amsE PE=3 SV=2
Q58457 3.90e-14 1 242 14 260
Uncharacterized glycosyltransferase MJ1057 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1057 PE=3 SV=2
P71054 2.76e-12 1 234 11 248
Putative glycosyltransferase EpsE OS=Bacillus subtilis (strain 168) OX=224308 GN=epsE PE=2 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000044 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003425_01343.