logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002988_00200

You are here: Home > Sequence: MGYG000002988_00200

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Pauljensenia sp900556405
Lineage Bacteria; Actinobacteriota; Actinomycetia; Actinomycetales; Actinomycetaceae; Pauljensenia; Pauljensenia sp900556405
CAZyme ID MGYG000002988_00200
CAZy Family GT4
CAZyme Description D-inositol-3-phosphate glycosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
368 39690.44 9.0815
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002988 1973013 MAG United States North America
Gene Location Start: 305;  End: 1411  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002988_00200.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 189 330 6.6e-28 0.89375

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03798 GT4_WlbH-like 2.12e-46 81 366 94 376
Bordetella parapertussis WlbH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Staphylococcus aureus CapJ may be involved in capsule polysaccharide biosynthesis. WlbH in Bordetella parapertussis has been shown to be required for the biosynthesis of a trisaccharide that, when attached to the B. pertussis lipopolysaccharide (LPS) core (band B), generates band A LPS.
cd03801 GT4_PimA-like 7.54e-46 17 363 21 365
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd05844 GT4-like 6.73e-45 83 362 82 365
glycosyltransferase family 4 proteins. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to glycosyltransferase family 4 (GT4). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility.
COG0438 RfaB 3.79e-40 17 368 22 379
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03823 GT4_ExpE7-like 2.05e-34 83 368 97 356
glycosyltransferase ExpE7 and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. ExpE7 in Sinorhizobium meliloti has been shown to be involved in the biosynthesis of galactoglucans (exopolysaccharide II).

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QGS10647.1 3.65e-223 1 368 1 367
QCT35929.1 8.18e-220 1 368 1 367
AKU64589.1 1.97e-179 1 367 1 369
QQC43193.1 3.76e-177 1 367 1 369
AOS46996.1 3.75e-126 1 366 1 368

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3OKA_A 5.67e-16 171 345 171 363
Crystalstructure of Corynebacterium glutamicum PimB' in complex with GDP-Man (triclinic crystal form) [Corynebacterium glutamicum],3OKA_B Crystal structure of Corynebacterium glutamicum PimB' in complex with GDP-Man (triclinic crystal form) [Corynebacterium glutamicum]
3OKC_A 6.13e-16 171 345 171 363
Crystalstructure of Corynebacterium glutamicum PimB' bound to GDP (orthorhombic crystal form) [Corynebacterium glutamicum],3OKP_A Crystal structure of Corynebacterium glutamicum PimB' bound to GDP-Man (orthorhombic crystal form) [Corynebacterium glutamicum]
3C4Q_A 2.61e-11 160 365 185 404
Structureof the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4Q_B Structure of the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4V_A Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum],3C4V_B Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum]
3C48_A 2.69e-11 160 365 205 424
Structureof the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum],3C48_B Structure of the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum]
6KIH_A 3.73e-11 189 329 243 388
Sucrose-phosphatesynthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_B Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_C Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_D Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_E Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_F Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_G Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_H Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_I Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_J Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_K Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus],6KIH_L Sucrose-phosphate synthase (tll1590) from Thermosynechococcus elongatus [Thermosynechococcus vestitus]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
C7QKE8 1.13e-21 19 309 36 355
D-inositol 3-phosphate glycosyltransferase 2 OS=Catenulispora acidiphila (strain DSM 44928 / JCM 14897 / NBRC 102108 / NRRL B-24433 / ID139908) OX=479433 GN=mshA2 PE=3 SV=1
D6Z995 2.08e-17 60 344 115 416
D-inositol 3-phosphate glycosyltransferase OS=Segniliparus rotundus (strain ATCC BAA-972 / CDC 1076 / CIP 108378 / DSM 44985 / JCM 13578) OX=640132 GN=mshA PE=3 SV=1
A1T3B5 2.81e-17 23 346 52 400
D-inositol 3-phosphate glycosyltransferase OS=Mycolicibacterium vanbaalenii (strain DSM 7251 / JCM 13017 / BCRC 16820 / KCTC 9966 / NRRL B-24157 / PYR-1) OX=350058 GN=mshA PE=3 SV=1
B8HCF8 3.27e-17 19 344 35 386
D-inositol 3-phosphate glycosyltransferase OS=Pseudarthrobacter chlorophenolicus (strain ATCC 700700 / DSM 12829 / CIP 107037 / JCM 12360 / KCTC 9906 / NCIMB 13794 / A6) OX=452863 GN=mshA PE=3 SV=1
D1BZ82 5.85e-17 19 344 37 389
D-inositol 3-phosphate glycosyltransferase OS=Xylanimonas cellulosilytica (strain DSM 15894 / CECT 5975 / LMG 20990 / XIL07) OX=446471 GN=mshA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000061 0.000002 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002988_00200.