Species | Actinomyces oris | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Actinobacteriota; Actinomycetia; Actinomycetales; Actinomycetaceae; Actinomyces; Actinomyces oris | |||||||||||
CAZyme ID | MGYG000002943_00189 | |||||||||||
CAZy Family | GT2 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 29110; End: 31047 Strand: - |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
pfam13524 | Glyco_trans_1_2 | 1.49e-14 | 312 | 406 | 1 | 93 | Glycosyl transferases group 1. |
COG4641 | COG4641 | 1.02e-13 | 149 | 417 | 97 | 369 | Spore maturation protein CgeB [Cell cycle control, cell division, chromosome partitioning]. |
cd03801 | GT4_PimA-like | 4.88e-09 | 173 | 406 | 132 | 363 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
pfam12996 | DUF3880 | 2.79e-08 | 164 | 239 | 1 | 74 | DUF based on E. rectale Gene description (DUF3880). Based on Eubacterium rectale gene EUBREC_3218. As seen in gene expression experiments (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14737), It appears to be upregulated in the presence of Bacteroides thetaiotaomicron vs when isolated in culture. |
COG0438 | RfaB | 1.32e-06 | 185 | 406 | 154 | 372 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
CEA08462.1 | 4.68e-209 | 16 | 639 | 3 | 630 |
VEH75118.1 | 1.52e-208 | 19 | 635 | 9 | 630 |
BAG29604.1 | 1.52e-208 | 19 | 635 | 9 | 630 |
ASE10509.2 | 2.25e-207 | 24 | 635 | 1 | 617 |
QWC09117.1 | 2.13e-199 | 19 | 639 | 4 | 629 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000071 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.