logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002609_01351

You are here: Home > Sequence: MGYG000002609_01351

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species CAG-882 sp003486385
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; CAG-882; CAG-882 sp003486385
CAZyme ID MGYG000002609_01351
CAZy Family GT4
CAZyme Description Glycosyltransferase Gtf1
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
467 53523.77 5.5328
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002609 3323522 MAG China Asia
Gene Location Start: 86173;  End: 87576  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002609_01351.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 289 438 8.8e-28 0.9125

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03813 GT4-like 8.95e-174 2 462 1 474
glycosyltransferase family 4 proteins. This family is most closely related to the GT4 family of glycosyltransferases. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in bacteria, while some of them are also found in Archaea and eukaryotes.
NF038011 PelF 5.97e-112 3 461 2 489
GT4 family glycosyltransferase PelF. Proteins of this family are components of the exopolysaccharide Pel transporter. It has been reported that PelF is a soluble glycosyltransferase that uses UDP-glucose as the substrate for the synthesis of exopolysaccharide Pel, whereas PelG is a Wzx-like and PST family exopolysaccharide transporter.
pfam11997 DUF3492 1.95e-89 1 259 1 278
Domain of unknown function (DUF3492). This presumed domain is functionally uncharacterized. This domain is found in bacteria, archaea and eukaryotes. This domain is typically between 259 to 282 amino acids in length. This domain is found associated with pfam00534. This domain has two conserved sequence motifs: GGVS and EHGIY.
cd03801 GT4_PimA-like 4.66e-46 165 462 82 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 1.99e-39 135 467 54 380
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
CBL00170.1 3.10e-176 1 461 3 463
ADL34527.1 1.30e-175 1 462 1 463
AZH69725.1 7.68e-175 1 461 1 461
SQG79074.1 4.57e-174 1 465 1 466
QWX87498.1 4.57e-174 1 465 1 466

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q8CWR6 8.16e-10 165 458 85 386
Alpha-monoglucosyldiacylglycerol synthase OS=Streptococcus pneumoniae (strain ATCC BAA-255 / R6) OX=171101 GN=spr0982 PE=1 SV=1
D4GU62 1.41e-08 292 424 225 352
Low-salt glycan biosynthesis hexosyltransferase Agl9 OS=Haloferax volcanii (strain ATCC 29605 / DSM 3757 / JCM 8879 / NBRC 14742 / NCIMB 2012 / VKM B-1768 / DS2) OX=309800 GN=agl9 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000046 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002609_01351.