logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002605_01483

You are here: Home > Sequence: MGYG000002605_01483

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UBA6984 sp003258725
Lineage Bacteria; Cyanobacteria; Vampirovibrionia; Gastranaerophilales; Gastranaerophilaceae; UBA6984; UBA6984 sp003258725
CAZyme ID MGYG000002605_01483
CAZy Family GT4
CAZyme Description Putative teichuronic acid biosynthesis glycosyltransferase TuaC
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
357 MGYG000002605_12|CGC1 40846.45 7.9691
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002605 1854240 MAG China Asia
Gene Location Start: 47213;  End: 48286  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002605_01483.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 192 320 1.1e-30 0.86875

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03801 GT4_PimA-like 1.11e-42 2 351 1 363
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03798 GT4_WlbH-like 1.10e-39 3 320 1 341
Bordetella parapertussis WlbH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Staphylococcus aureus CapJ may be involved in capsule polysaccharide biosynthesis. WlbH in Bordetella parapertussis has been shown to be required for the biosynthesis of a trisaccharide that, when attached to the B. pertussis lipopolysaccharide (LPS) core (band B), generates band A LPS.
COG0438 RfaB 1.24e-37 1 351 1 372
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03817 GT4_UGDG-like 5.57e-37 2 323 1 343
UDP-Glc:1,2-diacylglycerol 3-a-glucosyltransferase and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. UDP-glucose-diacylglycerol glucosyltransferase (EC 2.4.1.337, UGDG; also known as 1,2-diacylglycerol 3-glucosyltransferase) catalyzes the transfer of glucose from UDP-glucose to 1,2-diacylglycerol forming 3-D-glucosyl-1,2-diacylglycerol.
pfam00534 Glycos_transf_1 3.63e-33 193 323 5 146
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AOR38542.1 4.36e-136 1 355 1 353
BBE30175.1 5.28e-44 1 353 1 370
APC49618.1 1.19e-43 1 353 1 390
QWC22566.1 4.75e-43 1 339 1 364
QYX28696.1 1.89e-35 1 355 1 387

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6N1X_A 3.68e-11 32 331 31 347
ChainA, Glycosyltransferase [Staphylococcus aureus subsp. aureus CN1]
6D9T_A 3.98e-11 32 331 47 363
BshAfrom Staphylococcus aureus complexed with UDP [Staphylococcus aureus]
3L01_A 7.52e-08 202 351 264 425
ChainA, GlgA glycogen synthase [Pyrococcus abyssi],3L01_B Chain B, GlgA glycogen synthase [Pyrococcus abyssi]
3FRO_A 7.67e-08 202 351 264 425
Crystalstructure of Pyrococcus abyssi glycogen synthase with open and closed conformations [Pyrococcus abyssi],3FRO_B Crystal structure of Pyrococcus abyssi glycogen synthase with open and closed conformations [Pyrococcus abyssi],3FRO_C Crystal structure of Pyrococcus abyssi glycogen synthase with open and closed conformations [Pyrococcus abyssi]
2BIS_A 7.68e-08 202 351 265 426
Structureof glycogen synthase from Pyrococcus abyssi [Pyrococcus abyssi],2BIS_B Structure of glycogen synthase from Pyrococcus abyssi [Pyrococcus abyssi],2BIS_C Structure of glycogen synthase from Pyrococcus abyssi [Pyrococcus abyssi]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q8CWR6 5.76e-10 144 356 151 383
Alpha-monoglucosyldiacylglycerol synthase OS=Streptococcus pneumoniae (strain ATCC BAA-255 / R6) OX=171101 GN=spr0982 PE=1 SV=1
Q58469 6.77e-10 124 327 150 362
Uncharacterized glycosyltransferase MJ1069 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1069 PE=3 SV=1
Q59002 2.14e-09 32 320 31 348
Uncharacterized glycosyltransferase MJ1607 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1607 PE=3 SV=1
Q9R9N1 4.24e-09 193 351 171 334
Lipopolysaccharide core biosynthesis glycosyltransferase LpsE OS=Rhizobium meliloti (strain 1021) OX=266834 GN=lpsE PE=3 SV=1
Q46638 7.11e-09 1 325 1 372
Amylovoran biosynthesis glycosyltransferase AmsK OS=Erwinia amylovora OX=552 GN=amsK PE=3 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000041 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002605_01483.